Spaces:
Configuration error
Configuration error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class REBNCONV(nn.Module): | |
def __init__(self, in_ch=3, out_ch=3, dirate=1): | |
super(REBNCONV, self).__init__() | |
self.conv_s1 = nn.Conv2d( | |
in_ch, out_ch, 3, padding=1 * dirate, dilation=1 * dirate | |
) | |
self.bn_s1 = nn.BatchNorm2d(out_ch) | |
self.relu_s1 = nn.ReLU(inplace=True) | |
def forward(self, x): | |
hx = x | |
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx))) | |
return xout | |
## upsample tensor 'src' to have the same spatial size with tensor 'tar' | |
def _upsample_like(src, tar): | |
src = F.upsample(src, size=tar.shape[2:], mode="bilinear") | |
return src | |
### RSU-7 ### | |
class RSU7(nn.Module): # UNet07DRES(nn.Module): | |
def __init__(self, in_ch=3, mid_ch=12, out_ch=3): | |
super(RSU7, self).__init__() | |
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) | |
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) | |
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool5 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.rebnconv7 = REBNCONV(mid_ch, mid_ch, dirate=2) | |
self.rebnconv6d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) | |
def forward(self, x): | |
hx = x | |
hxin = self.rebnconvin(hx) | |
hx1 = self.rebnconv1(hxin) | |
hx = self.pool1(hx1) | |
hx2 = self.rebnconv2(hx) | |
hx = self.pool2(hx2) | |
hx3 = self.rebnconv3(hx) | |
hx = self.pool3(hx3) | |
hx4 = self.rebnconv4(hx) | |
hx = self.pool4(hx4) | |
hx5 = self.rebnconv5(hx) | |
hx = self.pool5(hx5) | |
hx6 = self.rebnconv6(hx) | |
hx7 = self.rebnconv7(hx6) | |
hx6d = self.rebnconv6d(torch.cat((hx7, hx6), 1)) | |
hx6dup = _upsample_like(hx6d, hx5) | |
hx5d = self.rebnconv5d(torch.cat((hx6dup, hx5), 1)) | |
hx5dup = _upsample_like(hx5d, hx4) | |
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1)) | |
hx4dup = _upsample_like(hx4d, hx3) | |
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1)) | |
hx3dup = _upsample_like(hx3d, hx2) | |
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) | |
hx2dup = _upsample_like(hx2d, hx1) | |
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) | |
""" | |
del hx1, hx2, hx3, hx4, hx5, hx6, hx7 | |
del hx6d, hx5d, hx3d, hx2d | |
del hx2dup, hx3dup, hx4dup, hx5dup, hx6dup | |
""" | |
return hx1d + hxin | |
### RSU-6 ### | |
class RSU6(nn.Module): # UNet06DRES(nn.Module): | |
def __init__(self, in_ch=3, mid_ch=12, out_ch=3): | |
super(RSU6, self).__init__() | |
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) | |
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) | |
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=2) | |
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) | |
def forward(self, x): | |
hx = x | |
hxin = self.rebnconvin(hx) | |
hx1 = self.rebnconv1(hxin) | |
hx = self.pool1(hx1) | |
hx2 = self.rebnconv2(hx) | |
hx = self.pool2(hx2) | |
hx3 = self.rebnconv3(hx) | |
hx = self.pool3(hx3) | |
hx4 = self.rebnconv4(hx) | |
hx = self.pool4(hx4) | |
hx5 = self.rebnconv5(hx) | |
hx6 = self.rebnconv6(hx5) | |
hx5d = self.rebnconv5d(torch.cat((hx6, hx5), 1)) | |
hx5dup = _upsample_like(hx5d, hx4) | |
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1)) | |
hx4dup = _upsample_like(hx4d, hx3) | |
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1)) | |
hx3dup = _upsample_like(hx3d, hx2) | |
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) | |
hx2dup = _upsample_like(hx2d, hx1) | |
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) | |
""" | |
del hx1, hx2, hx3, hx4, hx5, hx6 | |
del hx5d, hx4d, hx3d, hx2d | |
del hx2dup, hx3dup, hx4dup, hx5dup | |
""" | |
return hx1d + hxin | |
### RSU-5 ### | |
class RSU5(nn.Module): # UNet05DRES(nn.Module): | |
def __init__(self, in_ch=3, mid_ch=12, out_ch=3): | |
super(RSU5, self).__init__() | |
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) | |
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) | |
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=2) | |
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) | |
def forward(self, x): | |
hx = x | |
hxin = self.rebnconvin(hx) | |
hx1 = self.rebnconv1(hxin) | |
hx = self.pool1(hx1) | |
hx2 = self.rebnconv2(hx) | |
hx = self.pool2(hx2) | |
hx3 = self.rebnconv3(hx) | |
hx = self.pool3(hx3) | |
hx4 = self.rebnconv4(hx) | |
hx5 = self.rebnconv5(hx4) | |
hx4d = self.rebnconv4d(torch.cat((hx5, hx4), 1)) | |
hx4dup = _upsample_like(hx4d, hx3) | |
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1)) | |
hx3dup = _upsample_like(hx3d, hx2) | |
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) | |
hx2dup = _upsample_like(hx2d, hx1) | |
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) | |
""" | |
del hx1, hx2, hx3, hx4, hx5 | |
del hx4d, hx3d, hx2d | |
del hx2dup, hx3dup, hx4dup | |
""" | |
return hx1d + hxin | |
### RSU-4 ### | |
class RSU4(nn.Module): # UNet04DRES(nn.Module): | |
def __init__(self, in_ch=3, mid_ch=12, out_ch=3): | |
super(RSU4, self).__init__() | |
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) | |
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) | |
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=2) | |
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) | |
def forward(self, x): | |
hx = x | |
hxin = self.rebnconvin(hx) | |
hx1 = self.rebnconv1(hxin) | |
hx = self.pool1(hx1) | |
hx2 = self.rebnconv2(hx) | |
hx = self.pool2(hx2) | |
hx3 = self.rebnconv3(hx) | |
hx4 = self.rebnconv4(hx3) | |
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1)) | |
hx3dup = _upsample_like(hx3d, hx2) | |
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) | |
hx2dup = _upsample_like(hx2d, hx1) | |
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) | |
""" | |
del hx1, hx2, hx3, hx4 | |
del hx3d, hx2d | |
del hx2dup, hx3dup | |
""" | |
return hx1d + hxin | |
### RSU-4F ### | |
class RSU4F(nn.Module): # UNet04FRES(nn.Module): | |
def __init__(self, in_ch=3, mid_ch=12, out_ch=3): | |
super(RSU4F, self).__init__() | |
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) | |
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) | |
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=2) | |
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=4) | |
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=8) | |
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=4) | |
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=2) | |
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) | |
def forward(self, x): | |
hx = x | |
hxin = self.rebnconvin(hx) | |
hx1 = self.rebnconv1(hxin) | |
hx2 = self.rebnconv2(hx1) | |
hx3 = self.rebnconv3(hx2) | |
hx4 = self.rebnconv4(hx3) | |
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1)) | |
hx2d = self.rebnconv2d(torch.cat((hx3d, hx2), 1)) | |
hx1d = self.rebnconv1d(torch.cat((hx2d, hx1), 1)) | |
""" | |
del hx1, hx2, hx3, hx4 | |
del hx3d, hx2d | |
""" | |
return hx1d + hxin | |
##### U^2-Net #### | |
class U2NET(nn.Module): | |
def __init__(self, in_ch=3, out_ch=1): | |
super(U2NET, self).__init__() | |
self.stage1 = RSU7(in_ch, 32, 64) | |
self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage2 = RSU6(64, 32, 128) | |
self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage3 = RSU5(128, 64, 256) | |
self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage4 = RSU4(256, 128, 512) | |
self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage5 = RSU4F(512, 256, 512) | |
self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage6 = RSU4F(512, 256, 512) | |
# decoder | |
self.stage5d = RSU4F(1024, 256, 512) | |
self.stage4d = RSU4(1024, 128, 256) | |
self.stage3d = RSU5(512, 64, 128) | |
self.stage2d = RSU6(256, 32, 64) | |
self.stage1d = RSU7(128, 16, 64) | |
self.side1 = nn.Conv2d(64, out_ch, 3, padding=1) | |
self.side2 = nn.Conv2d(64, out_ch, 3, padding=1) | |
self.side3 = nn.Conv2d(128, out_ch, 3, padding=1) | |
self.side4 = nn.Conv2d(256, out_ch, 3, padding=1) | |
self.side5 = nn.Conv2d(512, out_ch, 3, padding=1) | |
self.side6 = nn.Conv2d(512, out_ch, 3, padding=1) | |
self.outconv = nn.Conv2d(6 * out_ch, out_ch, 1) | |
def forward(self, x): | |
hx = x | |
# stage 1 | |
hx1 = self.stage1(hx) | |
hx = self.pool12(hx1) | |
# stage 2 | |
hx2 = self.stage2(hx) | |
hx = self.pool23(hx2) | |
# stage 3 | |
hx3 = self.stage3(hx) | |
hx = self.pool34(hx3) | |
# stage 4 | |
hx4 = self.stage4(hx) | |
hx = self.pool45(hx4) | |
# stage 5 | |
hx5 = self.stage5(hx) | |
hx = self.pool56(hx5) | |
# stage 6 | |
hx6 = self.stage6(hx) | |
hx6up = _upsample_like(hx6, hx5) | |
# -------------------- decoder -------------------- | |
hx5d = self.stage5d(torch.cat((hx6up, hx5), 1)) | |
hx5dup = _upsample_like(hx5d, hx4) | |
hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1)) | |
hx4dup = _upsample_like(hx4d, hx3) | |
hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1)) | |
hx3dup = _upsample_like(hx3d, hx2) | |
hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1)) | |
hx2dup = _upsample_like(hx2d, hx1) | |
hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1)) | |
# side output | |
d1 = self.side1(hx1d) | |
d2 = self.side2(hx2d) | |
d2 = _upsample_like(d2, d1) | |
d3 = self.side3(hx3d) | |
d3 = _upsample_like(d3, d1) | |
d4 = self.side4(hx4d) | |
d4 = _upsample_like(d4, d1) | |
d5 = self.side5(hx5d) | |
d5 = _upsample_like(d5, d1) | |
d6 = self.side6(hx6) | |
d6 = _upsample_like(d6, d1) | |
d0 = self.outconv(torch.cat((d1, d2, d3, d4, d5, d6), 1)) | |
""" | |
del hx1, hx2, hx3, hx4, hx5, hx6 | |
del hx5d, hx4d, hx3d, hx2d, hx1d | |
del hx6up, hx5dup, hx4dup, hx3dup, hx2dup | |
""" | |
return d0, d1, d2, d3, d4, d5, d6 | |
### U^2-Net small ### | |
class U2NETP(nn.Module): | |
def __init__(self, in_ch=3, out_ch=1): | |
super(U2NETP, self).__init__() | |
self.stage1 = RSU7(in_ch, 16, 64) | |
self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage2 = RSU6(64, 16, 64) | |
self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage3 = RSU5(64, 16, 64) | |
self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage4 = RSU4(64, 16, 64) | |
self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage5 = RSU4F(64, 16, 64) | |
self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage6 = RSU4F(64, 16, 64) | |
# decoder | |
self.stage5d = RSU4F(128, 16, 64) | |
self.stage4d = RSU4(128, 16, 64) | |
self.stage3d = RSU5(128, 16, 64) | |
self.stage2d = RSU6(128, 16, 64) | |
self.stage1d = RSU7(128, 16, 64) | |
self.side1 = nn.Conv2d(64, out_ch, 3, padding=1) | |
self.side2 = nn.Conv2d(64, out_ch, 3, padding=1) | |
self.side3 = nn.Conv2d(64, out_ch, 3, padding=1) | |
self.side4 = nn.Conv2d(64, out_ch, 3, padding=1) | |
self.side5 = nn.Conv2d(64, out_ch, 3, padding=1) | |
self.side6 = nn.Conv2d(64, out_ch, 3, padding=1) | |
self.outconv = nn.Conv2d(6 * out_ch, out_ch, 1) | |
def forward(self, x): | |
hx = x | |
# stage 1 | |
hx1 = self.stage1(hx) | |
hx = self.pool12(hx1) | |
# stage 2 | |
hx2 = self.stage2(hx) | |
hx = self.pool23(hx2) | |
# stage 3 | |
hx3 = self.stage3(hx) | |
hx = self.pool34(hx3) | |
# stage 4 | |
hx4 = self.stage4(hx) | |
hx = self.pool45(hx4) | |
# stage 5 | |
hx5 = self.stage5(hx) | |
hx = self.pool56(hx5) | |
# stage 6 | |
hx6 = self.stage6(hx) | |
hx6up = _upsample_like(hx6, hx5) | |
# decoder | |
hx5d = self.stage5d(torch.cat((hx6up, hx5), 1)) | |
hx5dup = _upsample_like(hx5d, hx4) | |
hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1)) | |
hx4dup = _upsample_like(hx4d, hx3) | |
hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1)) | |
hx3dup = _upsample_like(hx3d, hx2) | |
hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1)) | |
hx2dup = _upsample_like(hx2d, hx1) | |
hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1)) | |
# side output | |
d1 = self.side1(hx1d) | |
d2 = self.side2(hx2d) | |
d2 = _upsample_like(d2, d1) | |
d3 = self.side3(hx3d) | |
d3 = _upsample_like(d3, d1) | |
d4 = self.side4(hx4d) | |
d4 = _upsample_like(d4, d1) | |
d5 = self.side5(hx5d) | |
d5 = _upsample_like(d5, d1) | |
d6 = self.side6(hx6) | |
d6 = _upsample_like(d6, d1) | |
d0 = self.outconv(torch.cat((d1, d2, d3, d4, d5, d6), 1)) | |
return d0, d1, d2, d3, d4, d5, d6 |