Add Gemini region load balancing.
Browse files- README.md +5 -1
- request.py +157 -6
- requirements.txt +3 -2
- utils.py +36 -1
README.md
CHANGED
@@ -55,10 +55,14 @@ providers:
|
|
55 |
- provider: vertex
|
56 |
project_id: gen-lang-client-xxxxxxxxxxxxxx # 描述: 您的Google Cloud项目ID。格式: 字符串,通常由小写字母、数字和连字符组成。获取方式: 在Google Cloud Console的项目选择器中可以找到您的项目ID。
|
57 |
private_key: "-----BEGIN PRIVATE KEY-----\nxxxxx\n-----END PRIVATE" # 描述: Google Cloud Vertex AI服务账号的私钥。格式: 一个JSON格式的字符串,包含服务账号的私钥信息。获取方式: 在Google Cloud Console中创建服务账号,生成JSON格式的密钥文件,然后将其内容设置为此环境变量的值。
|
58 |
-
client_email: xxxxxxxxxx@
|
59 |
model:
|
60 |
- gemini-1.5-pro
|
61 |
- gemini-1.5-flash
|
|
|
|
|
|
|
|
|
62 |
tools: true
|
63 |
|
64 |
- provider: other-provider
|
|
|
55 |
- provider: vertex
|
56 |
project_id: gen-lang-client-xxxxxxxxxxxxxx # 描述: 您的Google Cloud项目ID。格式: 字符串,通常由小写字母、数字和连字符组成。获取方式: 在Google Cloud Console的项目选择器中可以找到您的项目ID。
|
57 |
private_key: "-----BEGIN PRIVATE KEY-----\nxxxxx\n-----END PRIVATE" # 描述: Google Cloud Vertex AI服务账号的私钥。格式: 一个JSON格式的字符串,包含服务账号的私钥信息。获取方式: 在Google Cloud Console中创建服务账号,生成JSON格式的密钥文件,然后将其内容设置为此环境变量的值。
|
58 |
+
client_email: xxxxxxxxxx@xxxxxxx.gserviceaccount.com # 描述: Google Cloud Vertex AI服务账号的电子邮件地址。格式: 通常是形如 "service-account-name@project-id.iam.gserviceaccount.com" 的字符串。获取方式: 在创建服务账号时生成,也可以在Google Cloud Console的"IAM与管理"部分查看服务账号详情获得。
|
59 |
model:
|
60 |
- gemini-1.5-pro
|
61 |
- gemini-1.5-flash
|
62 |
+
- claude-3-5-sonnet@20240620: claude-3-5-sonnet
|
63 |
+
- claude-3-opus@20240229: claude-3-opus
|
64 |
+
- claude-3-sonnet@20240229: claude-3-sonnet
|
65 |
+
- claude-3-haiku@20240307: claude-3-haiku
|
66 |
tools: true
|
67 |
|
68 |
- provider: other-provider
|
request.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import json
|
2 |
from models import RequestModel
|
3 |
-
from
|
4 |
|
5 |
async def get_image_message(base64_image, engine = None):
|
6 |
if "gpt" == engine:
|
@@ -222,19 +222,168 @@ def get_access_token(client_email, private_key):
|
|
222 |
response.raise_for_status()
|
223 |
return response.json()["access_token"]
|
224 |
|
225 |
-
async def
|
226 |
headers = {
|
227 |
'Content-Type': 'application/json'
|
228 |
}
|
229 |
if provider.get("client_email") and provider.get("private_key"):
|
230 |
access_token = get_access_token(provider['client_email'], provider['private_key'])
|
231 |
headers['Authorization'] = f"Bearer {access_token}"
|
232 |
-
|
|
|
|
|
233 |
if request.stream:
|
234 |
gemini_stream = "streamGenerateContent"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
if provider.get("project_id"):
|
236 |
project_id = provider.get("project_id")
|
237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
|
239 |
messages = []
|
240 |
systemInstruction = None
|
@@ -620,8 +769,10 @@ async def get_claude_payload(request, engine, provider):
|
|
620 |
async def get_payload(request: RequestModel, engine, provider):
|
621 |
if engine == "gemini":
|
622 |
return await get_gemini_payload(request, engine, provider)
|
623 |
-
elif engine == "vertex":
|
624 |
-
return await
|
|
|
|
|
625 |
elif engine == "claude":
|
626 |
return await get_claude_payload(request, engine, provider)
|
627 |
elif engine == "gpt":
|
|
|
1 |
import json
|
2 |
from models import RequestModel
|
3 |
+
from utils import c35s, c3s, c3o, c3h, CircularList
|
4 |
|
5 |
async def get_image_message(base64_image, engine = None):
|
6 |
if "gpt" == engine:
|
|
|
222 |
response.raise_for_status()
|
223 |
return response.json()["access_token"]
|
224 |
|
225 |
+
async def get_vertex_gemini_payload(request, engine, provider):
|
226 |
headers = {
|
227 |
'Content-Type': 'application/json'
|
228 |
}
|
229 |
if provider.get("client_email") and provider.get("private_key"):
|
230 |
access_token = get_access_token(provider['client_email'], provider['private_key'])
|
231 |
headers['Authorization'] = f"Bearer {access_token}"
|
232 |
+
if provider.get("project_id"):
|
233 |
+
project_id = provider.get("project_id")
|
234 |
+
|
235 |
if request.stream:
|
236 |
gemini_stream = "streamGenerateContent"
|
237 |
+
model = provider['model'][request.model]
|
238 |
+
location = CircularList(["us-central1", "us-east4", "us-west1", "us-west4", "europe-west1", "europe-west2"])
|
239 |
+
url = "https://{LOCATION}-aiplatform.googleapis.com/v1/projects/{PROJECT_ID}/locations/{LOCATION}/publishers/google/models/{MODEL_ID}:{stream}".format(LOCATION=location.next(), PROJECT_ID=project_id, MODEL_ID=model, stream=gemini_stream)
|
240 |
+
|
241 |
+
messages = []
|
242 |
+
systemInstruction = None
|
243 |
+
function_arguments = None
|
244 |
+
for msg in request.messages:
|
245 |
+
if msg.role == "assistant":
|
246 |
+
msg.role = "model"
|
247 |
+
tool_calls = None
|
248 |
+
if isinstance(msg.content, list):
|
249 |
+
content = []
|
250 |
+
for item in msg.content:
|
251 |
+
if item.type == "text":
|
252 |
+
text_message = await get_text_message(msg.role, item.text, engine)
|
253 |
+
content.append(text_message)
|
254 |
+
elif item.type == "image_url":
|
255 |
+
image_message = await get_image_message(item.image_url.url, engine)
|
256 |
+
content.append(image_message)
|
257 |
+
else:
|
258 |
+
content = [{"text": msg.content}]
|
259 |
+
tool_calls = msg.tool_calls
|
260 |
+
|
261 |
+
if tool_calls:
|
262 |
+
tool_call = tool_calls[0]
|
263 |
+
function_arguments = {
|
264 |
+
"functionCall": {
|
265 |
+
"name": tool_call.function.name,
|
266 |
+
"args": json.loads(tool_call.function.arguments)
|
267 |
+
}
|
268 |
+
}
|
269 |
+
messages.append(
|
270 |
+
{
|
271 |
+
"role": "model",
|
272 |
+
"parts": [function_arguments]
|
273 |
+
}
|
274 |
+
)
|
275 |
+
elif msg.role == "tool":
|
276 |
+
function_call_name = function_arguments["functionCall"]["name"]
|
277 |
+
messages.append(
|
278 |
+
{
|
279 |
+
"role": "function",
|
280 |
+
"parts": [{
|
281 |
+
"functionResponse": {
|
282 |
+
"name": function_call_name,
|
283 |
+
"response": {
|
284 |
+
"name": function_call_name,
|
285 |
+
"content": {
|
286 |
+
"result": msg.content,
|
287 |
+
}
|
288 |
+
}
|
289 |
+
}
|
290 |
+
}]
|
291 |
+
}
|
292 |
+
)
|
293 |
+
elif msg.role != "system":
|
294 |
+
messages.append({"role": msg.role, "parts": content})
|
295 |
+
elif msg.role == "system":
|
296 |
+
systemInstruction = {"parts": content}
|
297 |
+
|
298 |
+
|
299 |
+
payload = {
|
300 |
+
"contents": messages,
|
301 |
+
# "safetySettings": [
|
302 |
+
# {
|
303 |
+
# "category": "HARM_CATEGORY_HARASSMENT",
|
304 |
+
# "threshold": "BLOCK_NONE"
|
305 |
+
# },
|
306 |
+
# {
|
307 |
+
# "category": "HARM_CATEGORY_HATE_SPEECH",
|
308 |
+
# "threshold": "BLOCK_NONE"
|
309 |
+
# },
|
310 |
+
# {
|
311 |
+
# "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
312 |
+
# "threshold": "BLOCK_NONE"
|
313 |
+
# },
|
314 |
+
# {
|
315 |
+
# "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
316 |
+
# "threshold": "BLOCK_NONE"
|
317 |
+
# }
|
318 |
+
# ]
|
319 |
+
"generationConfig": {
|
320 |
+
"temperature": 0.5,
|
321 |
+
"max_output_tokens": 8192,
|
322 |
+
"top_k": 40,
|
323 |
+
"top_p": 0.95
|
324 |
+
},
|
325 |
+
}
|
326 |
+
if systemInstruction:
|
327 |
+
payload["system_instruction"] = systemInstruction
|
328 |
+
|
329 |
+
miss_fields = [
|
330 |
+
'model',
|
331 |
+
'messages',
|
332 |
+
'stream',
|
333 |
+
'tool_choice',
|
334 |
+
'temperature',
|
335 |
+
'top_p',
|
336 |
+
'max_tokens',
|
337 |
+
'presence_penalty',
|
338 |
+
'frequency_penalty',
|
339 |
+
'n',
|
340 |
+
'user',
|
341 |
+
'include_usage',
|
342 |
+
'logprobs',
|
343 |
+
'top_logprobs'
|
344 |
+
]
|
345 |
+
|
346 |
+
for field, value in request.model_dump(exclude_unset=True).items():
|
347 |
+
if field not in miss_fields and value is not None:
|
348 |
+
if field == "tools":
|
349 |
+
payload.update({
|
350 |
+
"tools": [{
|
351 |
+
"function_declarations": [tool["function"] for tool in value]
|
352 |
+
}],
|
353 |
+
"tool_config": {
|
354 |
+
"function_calling_config": {
|
355 |
+
"mode": "AUTO"
|
356 |
+
}
|
357 |
+
}
|
358 |
+
})
|
359 |
+
else:
|
360 |
+
payload[field] = value
|
361 |
+
|
362 |
+
return url, headers, payload
|
363 |
+
|
364 |
+
async def get_vertex_claude_payload(request, engine, provider):
|
365 |
+
headers = {
|
366 |
+
'Content-Type': 'application/json'
|
367 |
+
}
|
368 |
+
if provider.get("client_email") and provider.get("private_key"):
|
369 |
+
access_token = get_access_token(provider['client_email'], provider['private_key'])
|
370 |
+
headers['Authorization'] = f"Bearer {access_token}"
|
371 |
if provider.get("project_id"):
|
372 |
project_id = provider.get("project_id")
|
373 |
+
|
374 |
+
model = provider['model'][request.model]
|
375 |
+
if "claude-3-5-sonnet" in model:
|
376 |
+
location = c35s
|
377 |
+
elif "claude-3-opus" in model:
|
378 |
+
location = c3o
|
379 |
+
elif "claude-3-sonnet" in model:
|
380 |
+
location = c3s
|
381 |
+
elif "claude-3-haiku" in model:
|
382 |
+
location = c3h
|
383 |
+
|
384 |
+
if request.stream:
|
385 |
+
claude_stream = "streamRawPredict"
|
386 |
+
url = "https://{LOCATION}-aiplatform.googleapis.com/v1/projects/{PROJECT_ID}/locations/{LOCATION}/publishers/anthropic/models/{MODEL}:{stream}".format(LOCATION=location.next(), PROJECT_ID=project_id, MODEL=model, stream=claude_stream)
|
387 |
|
388 |
messages = []
|
389 |
systemInstruction = None
|
|
|
769 |
async def get_payload(request: RequestModel, engine, provider):
|
770 |
if engine == "gemini":
|
771 |
return await get_gemini_payload(request, engine, provider)
|
772 |
+
elif engine == "vertex" and "gemini" in provider['model'][request.model]:
|
773 |
+
return await get_vertex_gemini_payload(request, engine, provider)
|
774 |
+
elif engine == "vertex" and "claude" in provider['model'][request.model]:
|
775 |
+
return await get_vertex_claude_payload(request, engine, provider)
|
776 |
elif engine == "claude":
|
777 |
return await get_claude_payload(request, engine, provider)
|
778 |
elif engine == "gpt":
|
requirements.txt
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
-
httpx[http2]
|
2 |
pyyaml
|
3 |
pytest
|
4 |
uvicorn
|
5 |
-
fastapi
|
|
|
|
|
|
|
|
1 |
pyyaml
|
2 |
pytest
|
3 |
uvicorn
|
4 |
+
fastapi
|
5 |
+
httpx[http2]
|
6 |
+
cryptography
|
utils.py
CHANGED
@@ -185,4 +185,39 @@ def get_all_models(config):
|
|
185 |
}
|
186 |
all_models.append(model_info)
|
187 |
|
188 |
-
return all_models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
}
|
186 |
all_models.append(model_info)
|
187 |
|
188 |
+
return all_models
|
189 |
+
|
190 |
+
# 【GCP-Vertex AI 目前有這些區域可用】 https://cloud.google.com/vertex-ai/generative-ai/docs/partner-models/use-claude?hl=zh_cn
|
191 |
+
# c3.5s
|
192 |
+
# us-east5
|
193 |
+
# europe-west1
|
194 |
+
|
195 |
+
# c3s
|
196 |
+
# us-east5
|
197 |
+
# us-central1
|
198 |
+
# asia-southeast1
|
199 |
+
|
200 |
+
# c3o
|
201 |
+
# us-east5
|
202 |
+
|
203 |
+
# c3h
|
204 |
+
# us-east5
|
205 |
+
# us-central1
|
206 |
+
# europe-west1
|
207 |
+
# europe-west4
|
208 |
+
from collections import deque
|
209 |
+
class CircularList:
|
210 |
+
def __init__(self, items):
|
211 |
+
self.queue = deque(items)
|
212 |
+
|
213 |
+
def next(self):
|
214 |
+
if not self.queue:
|
215 |
+
return None
|
216 |
+
item = self.queue.popleft()
|
217 |
+
self.queue.append(item)
|
218 |
+
return item
|
219 |
+
|
220 |
+
c35s = CircularList(["us-east5", "europe-west1"])
|
221 |
+
c3s = CircularList(["us-east5", "us-central1", "asia-southeast1"])
|
222 |
+
c3o = CircularList(["us-east5"])
|
223 |
+
c3h = CircularList(["us-east5", "us-central1", "europe-west1", "europe-west4"])
|