root commited on
Commit
d01f62c
·
1 Parent(s): 6c86528

add test code

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +141 -0
  2. LICENSE +437 -0
  3. dataset/__init__.py +0 -0
  4. dataset/range_transform.py +44 -0
  5. dataset/reseed.py +6 -0
  6. dataset/static_dataset.py +179 -0
  7. dataset/tps.py +37 -0
  8. dataset/util.py +12 -0
  9. dataset/vos_dataset.py +210 -0
  10. inference/__init__.py +0 -0
  11. inference/data/__init__.py +0 -0
  12. inference/data/mask_mapper.py +67 -0
  13. inference/data/test_datasets.py +29 -0
  14. inference/data/video_reader.py +107 -0
  15. inference/inference_core.py +111 -0
  16. inference/interact/__init__.py +0 -0
  17. inference/interact/fbrs/LICENSE +373 -0
  18. inference/interact/fbrs/__init__.py +0 -0
  19. inference/interact/fbrs/controller.py +103 -0
  20. inference/interact/fbrs/inference/__init__.py +0 -0
  21. inference/interact/fbrs/inference/clicker.py +103 -0
  22. inference/interact/fbrs/inference/evaluation.py +56 -0
  23. inference/interact/fbrs/inference/predictors/__init__.py +95 -0
  24. inference/interact/fbrs/inference/predictors/base.py +100 -0
  25. inference/interact/fbrs/inference/predictors/brs.py +280 -0
  26. inference/interact/fbrs/inference/predictors/brs_functors.py +109 -0
  27. inference/interact/fbrs/inference/predictors/brs_losses.py +58 -0
  28. inference/interact/fbrs/inference/transforms/__init__.py +5 -0
  29. inference/interact/fbrs/inference/transforms/base.py +38 -0
  30. inference/interact/fbrs/inference/transforms/crops.py +97 -0
  31. inference/interact/fbrs/inference/transforms/flip.py +37 -0
  32. inference/interact/fbrs/inference/transforms/limit_longest_side.py +22 -0
  33. inference/interact/fbrs/inference/transforms/zoom_in.py +171 -0
  34. inference/interact/fbrs/inference/utils.py +177 -0
  35. inference/interact/fbrs/model/__init__.py +0 -0
  36. inference/interact/fbrs/model/initializer.py +105 -0
  37. inference/interact/fbrs/model/is_deeplab_model.py +86 -0
  38. inference/interact/fbrs/model/is_hrnet_model.py +87 -0
  39. inference/interact/fbrs/model/losses.py +134 -0
  40. inference/interact/fbrs/model/metrics.py +101 -0
  41. inference/interact/fbrs/model/modeling/__init__.py +0 -0
  42. inference/interact/fbrs/model/modeling/basic_blocks.py +71 -0
  43. inference/interact/fbrs/model/modeling/deeplab_v3.py +176 -0
  44. inference/interact/fbrs/model/modeling/hrnet_ocr.py +399 -0
  45. inference/interact/fbrs/model/modeling/ocr.py +141 -0
  46. inference/interact/fbrs/model/modeling/resnet.py +39 -0
  47. inference/interact/fbrs/model/modeling/resnetv1b.py +276 -0
  48. inference/interact/fbrs/model/ops.py +83 -0
  49. inference/interact/fbrs/model/syncbn/LICENSE +21 -0
  50. inference/interact/fbrs/model/syncbn/README.md +127 -0
.gitignore ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log/
2
+ output/
3
+ .vscode/
4
+ workspace/
5
+ tmp_occupy_memory_saves/
6
+ run*.sh
7
+ py-thin-plate-spline
8
+ wandb/
9
+ pretrain/
10
+ Pytorch-Correlation-extension/
11
+ result
12
+
13
+ # Byte-compiled / optimized / DLL files
14
+ __pycache__/
15
+ *.py[cod]
16
+ *$py.class
17
+
18
+ # C extensions
19
+ *.so
20
+
21
+ # Distribution / packaging
22
+ .Python
23
+ build/
24
+ develop-eggs/
25
+ dist/
26
+ downloads/
27
+ eggs/
28
+ .eggs/
29
+ lib/
30
+ lib64/
31
+ parts/
32
+ sdist/
33
+ var/
34
+ wheels/
35
+ pip-wheel-metadata/
36
+ share/python-wheels/
37
+ *.egg-info/
38
+ .installed.cfg
39
+ *.egg
40
+ MANIFEST
41
+
42
+ # PyInstaller
43
+ # Usually these files are written by a python script from a template
44
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
45
+ *.manifest
46
+ *.spec
47
+
48
+ # Installer logs
49
+ pip-log.txt
50
+ pip-delete-this-directory.txt
51
+
52
+ # Unit test / coverage reports
53
+ htmlcov/
54
+ .tox/
55
+ .nox/
56
+ .coverage
57
+ .coverage.*
58
+ .cache
59
+ nosetests.xml
60
+ coverage.xml
61
+ *.cover
62
+ *.py,cover
63
+ .hypothesis/
64
+ .pytest_cache/
65
+
66
+ # Translations
67
+ *.mo
68
+ *.pot
69
+
70
+ # Django stuff:
71
+ *.log
72
+ local_settings.py
73
+ db.sqlite3
74
+ db.sqlite3-journal
75
+
76
+ # Flask stuff:
77
+ instance/
78
+ .webassets-cache
79
+
80
+ # Scrapy stuff:
81
+ .scrapy
82
+
83
+ # Sphinx documentation
84
+ docs/_build/
85
+
86
+ # PyBuilder
87
+ target/
88
+
89
+ # Jupyter Notebook
90
+ .ipynb_checkpoints
91
+
92
+ # IPython
93
+ profile_default/
94
+ ipython_config.py
95
+
96
+ # pyenv
97
+ .python-version
98
+
99
+ # pipenv
100
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
101
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
102
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
103
+ # install all needed dependencies.
104
+ #Pipfile.lock
105
+
106
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow
107
+ __pypackages__/
108
+
109
+ # Celery stuff
110
+ celerybeat-schedule
111
+ celerybeat.pid
112
+
113
+ # SageMath parsed files
114
+ *.sage.py
115
+
116
+ # Environments
117
+ .env
118
+ .venv
119
+ env/
120
+ venv/
121
+ ENV/
122
+ env.bak/
123
+ venv.bak/
124
+
125
+ # Spyder project settings
126
+ .spyderproject
127
+ .spyproject
128
+
129
+ # Rope project settings
130
+ .ropeproject
131
+
132
+ # mkdocs documentation
133
+ /site
134
+
135
+ # mypy
136
+ .mypy_cache/
137
+ .dmypy.json
138
+ dmypy.json
139
+
140
+ # Pyre type checker
141
+ .pyre/
LICENSE ADDED
@@ -0,0 +1,437 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Attribution-NonCommercial-ShareAlike 4.0 International
2
+
3
+ =======================================================================
4
+
5
+ Creative Commons Corporation ("Creative Commons") is not a law firm and
6
+ does not provide legal services or legal advice. Distribution of
7
+ Creative Commons public licenses does not create a lawyer-client or
8
+ other relationship. Creative Commons makes its licenses and related
9
+ information available on an "as-is" basis. Creative Commons gives no
10
+ warranties regarding its licenses, any material licensed under their
11
+ terms and conditions, or any related information. Creative Commons
12
+ disclaims all liability for damages resulting from their use to the
13
+ fullest extent possible.
14
+
15
+ Using Creative Commons Public Licenses
16
+
17
+ Creative Commons public licenses provide a standard set of terms and
18
+ conditions that creators and other rights holders may use to share
19
+ original works of authorship and other material subject to copyright
20
+ and certain other rights specified in the public license below. The
21
+ following considerations are for informational purposes only, are not
22
+ exhaustive, and do not form part of our licenses.
23
+
24
+ Considerations for licensors: Our public licenses are
25
+ intended for use by those authorized to give the public
26
+ permission to use material in ways otherwise restricted by
27
+ copyright and certain other rights. Our licenses are
28
+ irrevocable. Licensors should read and understand the terms
29
+ and conditions of the license they choose before applying it.
30
+ Licensors should also secure all rights necessary before
31
+ applying our licenses so that the public can reuse the
32
+ material as expected. Licensors should clearly mark any
33
+ material not subject to the license. This includes other CC-
34
+ licensed material, or material used under an exception or
35
+ limitation to copyright. More considerations for licensors:
36
+ wiki.creativecommons.org/Considerations_for_licensors
37
+
38
+ Considerations for the public: By using one of our public
39
+ licenses, a licensor grants the public permission to use the
40
+ licensed material under specified terms and conditions. If
41
+ the licensor's permission is not necessary for any reason--for
42
+ example, because of any applicable exception or limitation to
43
+ copyright--then that use is not regulated by the license. Our
44
+ licenses grant only permissions under copyright and certain
45
+ other rights that a licensor has authority to grant. Use of
46
+ the licensed material may still be restricted for other
47
+ reasons, including because others have copyright or other
48
+ rights in the material. A licensor may make special requests,
49
+ such as asking that all changes be marked or described.
50
+ Although not required by our licenses, you are encouraged to
51
+ respect those requests where reasonable. More considerations
52
+ for the public:
53
+ wiki.creativecommons.org/Considerations_for_licensees
54
+
55
+ =======================================================================
56
+
57
+ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
58
+ Public License
59
+
60
+ By exercising the Licensed Rights (defined below), You accept and agree
61
+ to be bound by the terms and conditions of this Creative Commons
62
+ Attribution-NonCommercial-ShareAlike 4.0 International Public License
63
+ ("Public License"). To the extent this Public License may be
64
+ interpreted as a contract, You are granted the Licensed Rights in
65
+ consideration of Your acceptance of these terms and conditions, and the
66
+ Licensor grants You such rights in consideration of benefits the
67
+ Licensor receives from making the Licensed Material available under
68
+ these terms and conditions.
69
+
70
+
71
+ Section 1 -- Definitions.
72
+
73
+ a. Adapted Material means material subject to Copyright and Similar
74
+ Rights that is derived from or based upon the Licensed Material
75
+ and in which the Licensed Material is translated, altered,
76
+ arranged, transformed, or otherwise modified in a manner requiring
77
+ permission under the Copyright and Similar Rights held by the
78
+ Licensor. For purposes of this Public License, where the Licensed
79
+ Material is a musical work, performance, or sound recording,
80
+ Adapted Material is always produced where the Licensed Material is
81
+ synched in timed relation with a moving image.
82
+
83
+ b. Adapter's License means the license You apply to Your Copyright
84
+ and Similar Rights in Your contributions to Adapted Material in
85
+ accordance with the terms and conditions of this Public License.
86
+
87
+ c. BY-NC-SA Compatible License means a license listed at
88
+ creativecommons.org/compatiblelicenses, approved by Creative
89
+ Commons as essentially the equivalent of this Public License.
90
+
91
+ d. Copyright and Similar Rights means copyright and/or similar rights
92
+ closely related to copyright including, without limitation,
93
+ performance, broadcast, sound recording, and Sui Generis Database
94
+ Rights, without regard to how the rights are labeled or
95
+ categorized. For purposes of this Public License, the rights
96
+ specified in Section 2(b)(1)-(2) are not Copyright and Similar
97
+ Rights.
98
+
99
+ e. Effective Technological Measures means those measures that, in the
100
+ absence of proper authority, may not be circumvented under laws
101
+ fulfilling obligations under Article 11 of the WIPO Copyright
102
+ Treaty adopted on December 20, 1996, and/or similar international
103
+ agreements.
104
+
105
+ f. Exceptions and Limitations means fair use, fair dealing, and/or
106
+ any other exception or limitation to Copyright and Similar Rights
107
+ that applies to Your use of the Licensed Material.
108
+
109
+ g. License Elements means the license attributes listed in the name
110
+ of a Creative Commons Public License. The License Elements of this
111
+ Public License are Attribution, NonCommercial, and ShareAlike.
112
+
113
+ h. Licensed Material means the artistic or literary work, database,
114
+ or other material to which the Licensor applied this Public
115
+ License.
116
+
117
+ i. Licensed Rights means the rights granted to You subject to the
118
+ terms and conditions of this Public License, which are limited to
119
+ all Copyright and Similar Rights that apply to Your use of the
120
+ Licensed Material and that the Licensor has authority to license.
121
+
122
+ j. Licensor means the individual(s) or entity(ies) granting rights
123
+ under this Public License.
124
+
125
+ k. NonCommercial means not primarily intended for or directed towards
126
+ commercial advantage or monetary compensation. For purposes of
127
+ this Public License, the exchange of the Licensed Material for
128
+ other material subject to Copyright and Similar Rights by digital
129
+ file-sharing or similar means is NonCommercial provided there is
130
+ no payment of monetary compensation in connection with the
131
+ exchange.
132
+
133
+ l. Share means to provide material to the public by any means or
134
+ process that requires permission under the Licensed Rights, such
135
+ as reproduction, public display, public performance, distribution,
136
+ dissemination, communication, or importation, and to make material
137
+ available to the public including in ways that members of the
138
+ public may access the material from a place and at a time
139
+ individually chosen by them.
140
+
141
+ m. Sui Generis Database Rights means rights other than copyright
142
+ resulting from Directive 96/9/EC of the European Parliament and of
143
+ the Council of 11 March 1996 on the legal protection of databases,
144
+ as amended and/or succeeded, as well as other essentially
145
+ equivalent rights anywhere in the world.
146
+
147
+ n. You means the individual or entity exercising the Licensed Rights
148
+ under this Public License. Your has a corresponding meaning.
149
+
150
+
151
+ Section 2 -- Scope.
152
+
153
+ a. License grant.
154
+
155
+ 1. Subject to the terms and conditions of this Public License,
156
+ the Licensor hereby grants You a worldwide, royalty-free,
157
+ non-sublicensable, non-exclusive, irrevocable license to
158
+ exercise the Licensed Rights in the Licensed Material to:
159
+
160
+ a. reproduce and Share the Licensed Material, in whole or
161
+ in part, for NonCommercial purposes only; and
162
+
163
+ b. produce, reproduce, and Share Adapted Material for
164
+ NonCommercial purposes only.
165
+
166
+ 2. Exceptions and Limitations. For the avoidance of doubt, where
167
+ Exceptions and Limitations apply to Your use, this Public
168
+ License does not apply, and You do not need to comply with
169
+ its terms and conditions.
170
+
171
+ 3. Term. The term of this Public License is specified in Section
172
+ 6(a).
173
+
174
+ 4. Media and formats; technical modifications allowed. The
175
+ Licensor authorizes You to exercise the Licensed Rights in
176
+ all media and formats whether now known or hereafter created,
177
+ and to make technical modifications necessary to do so. The
178
+ Licensor waives and/or agrees not to assert any right or
179
+ authority to forbid You from making technical modifications
180
+ necessary to exercise the Licensed Rights, including
181
+ technical modifications necessary to circumvent Effective
182
+ Technological Measures. For purposes of this Public License,
183
+ simply making modifications authorized by this Section 2(a)
184
+ (4) never produces Adapted Material.
185
+
186
+ 5. Downstream recipients.
187
+
188
+ a. Offer from the Licensor -- Licensed Material. Every
189
+ recipient of the Licensed Material automatically
190
+ receives an offer from the Licensor to exercise the
191
+ Licensed Rights under the terms and conditions of this
192
+ Public License.
193
+
194
+ b. Additional offer from the Licensor -- Adapted Material.
195
+ Every recipient of Adapted Material from You
196
+ automatically receives an offer from the Licensor to
197
+ exercise the Licensed Rights in the Adapted Material
198
+ under the conditions of the Adapter's License You apply.
199
+
200
+ c. No downstream restrictions. You may not offer or impose
201
+ any additional or different terms or conditions on, or
202
+ apply any Effective Technological Measures to, the
203
+ Licensed Material if doing so restricts exercise of the
204
+ Licensed Rights by any recipient of the Licensed
205
+ Material.
206
+
207
+ 6. No endorsement. Nothing in this Public License constitutes or
208
+ may be construed as permission to assert or imply that You
209
+ are, or that Your use of the Licensed Material is, connected
210
+ with, or sponsored, endorsed, or granted official status by,
211
+ the Licensor or others designated to receive attribution as
212
+ provided in Section 3(a)(1)(A)(i).
213
+
214
+ b. Other rights.
215
+
216
+ 1. Moral rights, such as the right of integrity, are not
217
+ licensed under this Public License, nor are publicity,
218
+ privacy, and/or other similar personality rights; however, to
219
+ the extent possible, the Licensor waives and/or agrees not to
220
+ assert any such rights held by the Licensor to the limited
221
+ extent necessary to allow You to exercise the Licensed
222
+ Rights, but not otherwise.
223
+
224
+ 2. Patent and trademark rights are not licensed under this
225
+ Public License.
226
+
227
+ 3. To the extent possible, the Licensor waives any right to
228
+ collect royalties from You for the exercise of the Licensed
229
+ Rights, whether directly or through a collecting society
230
+ under any voluntary or waivable statutory or compulsory
231
+ licensing scheme. In all other cases the Licensor expressly
232
+ reserves any right to collect such royalties, including when
233
+ the Licensed Material is used other than for NonCommercial
234
+ purposes.
235
+
236
+
237
+ Section 3 -- License Conditions.
238
+
239
+ Your exercise of the Licensed Rights is expressly made subject to the
240
+ following conditions.
241
+
242
+ a. Attribution.
243
+
244
+ 1. If You Share the Licensed Material (including in modified
245
+ form), You must:
246
+
247
+ a. retain the following if it is supplied by the Licensor
248
+ with the Licensed Material:
249
+
250
+ i. identification of the creator(s) of the Licensed
251
+ Material and any others designated to receive
252
+ attribution, in any reasonable manner requested by
253
+ the Licensor (including by pseudonym if
254
+ designated);
255
+
256
+ ii. a copyright notice;
257
+
258
+ iii. a notice that refers to this Public License;
259
+
260
+ iv. a notice that refers to the disclaimer of
261
+ warranties;
262
+
263
+ v. a URI or hyperlink to the Licensed Material to the
264
+ extent reasonably practicable;
265
+
266
+ b. indicate if You modified the Licensed Material and
267
+ retain an indication of any previous modifications; and
268
+
269
+ c. indicate the Licensed Material is licensed under this
270
+ Public License, and include the text of, or the URI or
271
+ hyperlink to, this Public License.
272
+
273
+ 2. You may satisfy the conditions in Section 3(a)(1) in any
274
+ reasonable manner based on the medium, means, and context in
275
+ which You Share the Licensed Material. For example, it may be
276
+ reasonable to satisfy the conditions by providing a URI or
277
+ hyperlink to a resource that includes the required
278
+ information.
279
+ 3. If requested by the Licensor, You must remove any of the
280
+ information required by Section 3(a)(1)(A) to the extent
281
+ reasonably practicable.
282
+
283
+ b. ShareAlike.
284
+
285
+ In addition to the conditions in Section 3(a), if You Share
286
+ Adapted Material You produce, the following conditions also apply.
287
+
288
+ 1. The Adapter's License You apply must be a Creative Commons
289
+ license with the same License Elements, this version or
290
+ later, or a BY-NC-SA Compatible License.
291
+
292
+ 2. You must include the text of, or the URI or hyperlink to, the
293
+ Adapter's License You apply. You may satisfy this condition
294
+ in any reasonable manner based on the medium, means, and
295
+ context in which You Share Adapted Material.
296
+
297
+ 3. You may not offer or impose any additional or different terms
298
+ or conditions on, or apply any Effective Technological
299
+ Measures to, Adapted Material that restrict exercise of the
300
+ rights granted under the Adapter's License You apply.
301
+
302
+
303
+ Section 4 -- Sui Generis Database Rights.
304
+
305
+ Where the Licensed Rights include Sui Generis Database Rights that
306
+ apply to Your use of the Licensed Material:
307
+
308
+ a. for the avoidance of doubt, Section 2(a)(1) grants You the right
309
+ to extract, reuse, reproduce, and Share all or a substantial
310
+ portion of the contents of the database for NonCommercial purposes
311
+ only;
312
+
313
+ b. if You include all or a substantial portion of the database
314
+ contents in a database in which You have Sui Generis Database
315
+ Rights, then the database in which You have Sui Generis Database
316
+ Rights (but not its individual contents) is Adapted Material,
317
+ including for purposes of Section 3(b); and
318
+
319
+ c. You must comply with the conditions in Section 3(a) if You Share
320
+ all or a substantial portion of the contents of the database.
321
+
322
+ For the avoidance of doubt, this Section 4 supplements and does not
323
+ replace Your obligations under this Public License where the Licensed
324
+ Rights include other Copyright and Similar Rights.
325
+
326
+
327
+ Section 5 -- Disclaimer of Warranties and Limitation of Liability.
328
+
329
+ a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
330
+ EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
331
+ AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
332
+ ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
333
+ IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
334
+ WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
335
+ PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
336
+ ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
337
+ KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
338
+ ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
339
+
340
+ b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
341
+ TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
342
+ NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
343
+ INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
344
+ COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
345
+ USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
346
+ ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
347
+ DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
348
+ IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
349
+
350
+ c. The disclaimer of warranties and limitation of liability provided
351
+ above shall be interpreted in a manner that, to the extent
352
+ possible, most closely approximates an absolute disclaimer and
353
+ waiver of all liability.
354
+
355
+
356
+ Section 6 -- Term and Termination.
357
+
358
+ a. This Public License applies for the term of the Copyright and
359
+ Similar Rights licensed here. However, if You fail to comply with
360
+ this Public License, then Your rights under this Public License
361
+ terminate automatically.
362
+
363
+ b. Where Your right to use the Licensed Material has terminated under
364
+ Section 6(a), it reinstates:
365
+
366
+ 1. automatically as of the date the violation is cured, provided
367
+ it is cured within 30 days of Your discovery of the
368
+ violation; or
369
+
370
+ 2. upon express reinstatement by the Licensor.
371
+
372
+ For the avoidance of doubt, this Section 6(b) does not affect any
373
+ right the Licensor may have to seek remedies for Your violations
374
+ of this Public License.
375
+
376
+ c. For the avoidance of doubt, the Licensor may also offer the
377
+ Licensed Material under separate terms or conditions or stop
378
+ distributing the Licensed Material at any time; however, doing so
379
+ will not terminate this Public License.
380
+
381
+ d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
382
+ License.
383
+
384
+
385
+ Section 7 -- Other Terms and Conditions.
386
+
387
+ a. The Licensor shall not be bound by any additional or different
388
+ terms or conditions communicated by You unless expressly agreed.
389
+
390
+ b. Any arrangements, understandings, or agreements regarding the
391
+ Licensed Material not stated herein are separate from and
392
+ independent of the terms and conditions of this Public License.
393
+
394
+
395
+ Section 8 -- Interpretation.
396
+
397
+ a. For the avoidance of doubt, this Public License does not, and
398
+ shall not be interpreted to, reduce, limit, restrict, or impose
399
+ conditions on any use of the Licensed Material that could lawfully
400
+ be made without permission under this Public License.
401
+
402
+ b. To the extent possible, if any provision of this Public License is
403
+ deemed unenforceable, it shall be automatically reformed to the
404
+ minimum extent necessary to make it enforceable. If the provision
405
+ cannot be reformed, it shall be severed from this Public License
406
+ without affecting the enforceability of the remaining terms and
407
+ conditions.
408
+
409
+ c. No term or condition of this Public License will be waived and no
410
+ failure to comply consented to unless expressly agreed to by the
411
+ Licensor.
412
+
413
+ d. Nothing in this Public License constitutes or may be interpreted
414
+ as a limitation upon, or waiver of, any privileges and immunities
415
+ that apply to the Licensor or You, including from the legal
416
+ processes of any jurisdiction or authority.
417
+
418
+ =======================================================================
419
+
420
+ Creative Commons is not a party to its public
421
+ licenses. Notwithstanding, Creative Commons may elect to apply one of
422
+ its public licenses to material it publishes and in those instances
423
+ will be considered the “Licensor.” The text of the Creative Commons
424
+ public licenses is dedicated to the public domain under the CC0 Public
425
+ Domain Dedication. Except for the limited purpose of indicating that
426
+ material is shared under a Creative Commons public license or as
427
+ otherwise permitted by the Creative Commons policies published at
428
+ creativecommons.org/policies, Creative Commons does not authorize the
429
+ use of the trademark "Creative Commons" or any other trademark or logo
430
+ of Creative Commons without its prior written consent including,
431
+ without limitation, in connection with any unauthorized modifications
432
+ to any of its public licenses or any other arrangements,
433
+ understandings, or agreements concerning use of licensed material. For
434
+ the avoidance of doubt, this paragraph does not form part of the
435
+ public licenses.
436
+
437
+ Creative Commons may be contacted at creativecommons.org.
dataset/__init__.py ADDED
File without changes
dataset/range_transform.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torchvision.transforms as transforms
2
+ import util.functional as F
3
+ import numpy as np
4
+ from skimage import color
5
+
6
+ im_mean = (124, 116, 104)
7
+
8
+ im_normalization = transforms.Normalize(
9
+ mean=[0.485, 0.456, 0.406],
10
+ std=[0.229, 0.224, 0.225]
11
+ )
12
+
13
+ inv_im_trans = transforms.Normalize(
14
+ mean=[-0.485/0.229, -0.456/0.224, -0.406/0.225],
15
+ std=[1/0.229, 1/0.224, 1/0.225])
16
+
17
+ # tensor l[-1, 1] ab[-1, 1]
18
+ # numpy l[0 100] ab[-127 128]
19
+ # transforms.Normalize: x_new = (x-mean) / std
20
+ inv_lll2rgb_trans = transforms.Normalize(
21
+ mean=[-1, 0, 0],
22
+ std=[1/50., 1/110., 1/110.])
23
+
24
+ im_rgb2lab_normalization = transforms.Normalize(
25
+ mean=[50, 0, 0],
26
+ std=[50, 110, 110])
27
+
28
+ class ToTensor(object):
29
+ def __init__(self):
30
+ pass
31
+
32
+ def __call__(self, inputs):
33
+ return F.to_mytensor(inputs)
34
+
35
+ class RGB2Lab(object):
36
+ def __init__(self):
37
+ pass
38
+
39
+ def __call__(self, inputs):
40
+ # default return float64
41
+ # return color.rgb2lab(inputs)
42
+
43
+ # return float32
44
+ return np.float32(color.rgb2lab(inputs))
dataset/reseed.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ import torch
2
+ import random
3
+
4
+ def reseed(seed):
5
+ random.seed(seed)
6
+ torch.manual_seed(seed)
dataset/static_dataset.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from os import path
3
+
4
+ import torch
5
+ from torch.utils.data.dataset import Dataset
6
+ from torchvision import transforms
7
+ from torchvision.transforms import InterpolationMode
8
+ from PIL import Image
9
+ import numpy as np
10
+
11
+ from dataset.range_transform import im_normalization, im_mean
12
+ from dataset.tps import random_tps_warp
13
+ from dataset.reseed import reseed
14
+
15
+
16
+ class StaticTransformDataset(Dataset):
17
+ """
18
+ Generate pseudo VOS data by applying random transforms on static images.
19
+ Single-object only.
20
+
21
+ Method 0 - FSS style (class/1.jpg class/1.png)
22
+ Method 1 - Others style (XXX.jpg XXX.png)
23
+ """
24
+ def __init__(self, parameters, num_frames=3, max_num_obj=1):
25
+ self.num_frames = num_frames
26
+ self.max_num_obj = max_num_obj
27
+
28
+ self.im_list = []
29
+ for parameter in parameters:
30
+ root, method, multiplier = parameter
31
+ if method == 0:
32
+ # Get images
33
+ classes = os.listdir(root)
34
+ for c in classes:
35
+ imgs = os.listdir(path.join(root, c))
36
+ jpg_list = [im for im in imgs if 'jpg' in im[-3:].lower()]
37
+
38
+ joint_list = [path.join(root, c, im) for im in jpg_list]
39
+ self.im_list.extend(joint_list * multiplier)
40
+
41
+ elif method == 1:
42
+ self.im_list.extend([path.join(root, im) for im in os.listdir(root) if '.jpg' in im] * multiplier)
43
+
44
+ print(f'{len(self.im_list)} images found.')
45
+
46
+ # These set of transform is the same for im/gt pairs, but different among the 3 sampled frames
47
+ self.pair_im_lone_transform = transforms.Compose([
48
+ transforms.ColorJitter(0.1, 0.05, 0.05, 0), # No hue change here as that's not realistic
49
+ ])
50
+
51
+ self.pair_im_dual_transform = transforms.Compose([
52
+ transforms.RandomAffine(degrees=20, scale=(0.9,1.1), shear=10, interpolation=InterpolationMode.BICUBIC, fill=im_mean),
53
+ transforms.Resize(384, InterpolationMode.BICUBIC),
54
+ transforms.RandomCrop((384, 384), pad_if_needed=True, fill=im_mean),
55
+ ])
56
+
57
+ self.pair_gt_dual_transform = transforms.Compose([
58
+ transforms.RandomAffine(degrees=20, scale=(0.9,1.1), shear=10, interpolation=InterpolationMode.BICUBIC, fill=0),
59
+ transforms.Resize(384, InterpolationMode.NEAREST),
60
+ transforms.RandomCrop((384, 384), pad_if_needed=True, fill=0),
61
+ ])
62
+
63
+
64
+ # These transform are the same for all pairs in the sampled sequence
65
+ self.all_im_lone_transform = transforms.Compose([
66
+ transforms.ColorJitter(0.1, 0.05, 0.05, 0.05),
67
+ transforms.RandomGrayscale(0.05),
68
+ ])
69
+
70
+ self.all_im_dual_transform = transforms.Compose([
71
+ transforms.RandomAffine(degrees=0, scale=(0.8, 1.5), fill=im_mean),
72
+ transforms.RandomHorizontalFlip(),
73
+ ])
74
+
75
+ self.all_gt_dual_transform = transforms.Compose([
76
+ transforms.RandomAffine(degrees=0, scale=(0.8, 1.5), fill=0),
77
+ transforms.RandomHorizontalFlip(),
78
+ ])
79
+
80
+ # Final transform without randomness
81
+ self.final_im_transform = transforms.Compose([
82
+ transforms.ToTensor(),
83
+ im_normalization,
84
+ ])
85
+
86
+ self.final_gt_transform = transforms.Compose([
87
+ transforms.ToTensor(),
88
+ ])
89
+
90
+ def _get_sample(self, idx):
91
+ im = Image.open(self.im_list[idx]).convert('RGB')
92
+ gt = Image.open(self.im_list[idx][:-3]+'png').convert('L')
93
+
94
+ sequence_seed = np.random.randint(2147483647)
95
+
96
+ images = []
97
+ masks = []
98
+ for _ in range(self.num_frames):
99
+ reseed(sequence_seed)
100
+ this_im = self.all_im_dual_transform(im)
101
+ this_im = self.all_im_lone_transform(this_im)
102
+ reseed(sequence_seed)
103
+ this_gt = self.all_gt_dual_transform(gt)
104
+
105
+ pairwise_seed = np.random.randint(2147483647)
106
+ reseed(pairwise_seed)
107
+ this_im = self.pair_im_dual_transform(this_im)
108
+ this_im = self.pair_im_lone_transform(this_im)
109
+ reseed(pairwise_seed)
110
+ this_gt = self.pair_gt_dual_transform(this_gt)
111
+
112
+ # Use TPS only some of the times
113
+ # Not because TPS is bad -- just that it is too slow and I need to speed up data loading
114
+ if np.random.rand() < 0.33:
115
+ this_im, this_gt = random_tps_warp(this_im, this_gt, scale=0.02)
116
+
117
+ this_im = self.final_im_transform(this_im)
118
+ this_gt = self.final_gt_transform(this_gt)
119
+
120
+ images.append(this_im)
121
+ masks.append(this_gt)
122
+
123
+ images = torch.stack(images, 0)
124
+ masks = torch.stack(masks, 0)
125
+
126
+ return images, masks.numpy()
127
+
128
+ def __getitem__(self, idx):
129
+ additional_objects = np.random.randint(self.max_num_obj)
130
+ indices = [idx, *np.random.randint(self.__len__(), size=additional_objects)]
131
+
132
+ merged_images = None
133
+ merged_masks = np.zeros((self.num_frames, 384, 384), dtype=np.int)
134
+
135
+ for i, list_id in enumerate(indices):
136
+ images, masks = self._get_sample(list_id)
137
+ if merged_images is None:
138
+ merged_images = images
139
+ else:
140
+ merged_images = merged_images*(1-masks) + images*masks
141
+ merged_masks[masks[:,0]>0.5] = (i+1)
142
+
143
+ masks = merged_masks
144
+
145
+ labels = np.unique(masks[0])
146
+ # Remove background
147
+ labels = labels[labels!=0]
148
+ target_objects = labels.tolist()
149
+
150
+ # Generate one-hot ground-truth
151
+ cls_gt = np.zeros((self.num_frames, 384, 384), dtype=np.int)
152
+ first_frame_gt = np.zeros((1, self.max_num_obj, 384, 384), dtype=np.int)
153
+ for i, l in enumerate(target_objects):
154
+ this_mask = (masks==l)
155
+ cls_gt[this_mask] = i+1
156
+ first_frame_gt[0,i] = (this_mask[0])
157
+ cls_gt = np.expand_dims(cls_gt, 1)
158
+
159
+ info = {}
160
+ info['name'] = self.im_list[idx]
161
+ info['num_objects'] = max(1, len(target_objects))
162
+
163
+ # 1 if object exist, 0 otherwise
164
+ selector = [1 if i < info['num_objects'] else 0 for i in range(self.max_num_obj)]
165
+ selector = torch.FloatTensor(selector)
166
+
167
+ data = {
168
+ 'rgb': merged_images,
169
+ 'first_frame_gt': first_frame_gt,
170
+ 'cls_gt': cls_gt,
171
+ 'selector': selector,
172
+ 'info': info
173
+ }
174
+
175
+ return data
176
+
177
+
178
+ def __len__(self):
179
+ return len(self.im_list)
dataset/tps.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from PIL import Image
3
+ import cv2
4
+ import thinplate as tps
5
+
6
+ cv2.setNumThreads(0)
7
+
8
+ def pick_random_points(h, w, n_samples):
9
+ y_idx = np.random.choice(np.arange(h), size=n_samples, replace=False)
10
+ x_idx = np.random.choice(np.arange(w), size=n_samples, replace=False)
11
+ return y_idx/h, x_idx/w
12
+
13
+
14
+ def warp_dual_cv(img, mask, c_src, c_dst):
15
+ dshape = img.shape
16
+ theta = tps.tps_theta_from_points(c_src, c_dst, reduced=True)
17
+ grid = tps.tps_grid(theta, c_dst, dshape)
18
+ mapx, mapy = tps.tps_grid_to_remap(grid, img.shape)
19
+ return cv2.remap(img, mapx, mapy, cv2.INTER_LINEAR), cv2.remap(mask, mapx, mapy, cv2.INTER_NEAREST)
20
+
21
+
22
+ def random_tps_warp(img, mask, scale, n_ctrl_pts=12):
23
+ """
24
+ Apply a random TPS warp of the input image and mask
25
+ Uses randomness from numpy
26
+ """
27
+ img = np.asarray(img)
28
+ mask = np.asarray(mask)
29
+
30
+ h, w = mask.shape
31
+ points = pick_random_points(h, w, n_ctrl_pts)
32
+ c_src = np.stack(points, 1)
33
+ c_dst = c_src + np.random.normal(scale=scale, size=c_src.shape)
34
+ warp_im, warp_gt = warp_dual_cv(img, mask, c_src, c_dst)
35
+
36
+ return Image.fromarray(warp_im), Image.fromarray(warp_gt)
37
+
dataset/util.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ def all_to_onehot(masks, labels):
4
+ if len(masks.shape) == 3:
5
+ Ms = np.zeros((len(labels), masks.shape[0], masks.shape[1], masks.shape[2]), dtype=np.uint8)
6
+ else:
7
+ Ms = np.zeros((len(labels), masks.shape[0], masks.shape[1]), dtype=np.uint8)
8
+
9
+ for ni, l in enumerate(labels):
10
+ Ms[ni] = (masks == l).astype(np.uint8)
11
+
12
+ return Ms
dataset/vos_dataset.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from os import path, replace
3
+
4
+ import torch
5
+ from torch.utils.data.dataset import Dataset
6
+ from torchvision import transforms
7
+ from torchvision.transforms import InterpolationMode
8
+ from PIL import Image
9
+ import numpy as np
10
+
11
+ from dataset.range_transform import im_normalization, im_mean, im_rgb2lab_normalization, ToTensor, RGB2Lab
12
+ from dataset.reseed import reseed
13
+
14
+ import util.functional as F
15
+
16
+ class VOSDataset_221128_TransColorization_batch(Dataset):
17
+ """
18
+ Works for DAVIS/YouTubeVOS/BL30K training
19
+ For each sequence:
20
+ - Pick three frames
21
+ - Pick two objects
22
+ - Apply some random transforms that are the same for all frames
23
+ - Apply random transform to each of the frame
24
+ - The distance between frames is controlled
25
+ """
26
+ def __init__(self, im_root, gt_root, max_jump, is_bl, subset=None, num_frames=3, max_num_obj=2, finetune=False):
27
+ self.im_root = im_root
28
+ self.gt_root = gt_root
29
+ self.max_jump = max_jump
30
+ self.is_bl = is_bl
31
+ self.num_frames = num_frames
32
+ self.max_num_obj = max_num_obj
33
+
34
+ self.videos = []
35
+ self.frames = {}
36
+ vid_list = sorted(os.listdir(self.im_root))
37
+ # Pre-filtering
38
+ for vid in vid_list:
39
+ if subset is not None:
40
+ if vid not in subset:
41
+ continue
42
+ frames = sorted(os.listdir(os.path.join(self.im_root, vid)))
43
+ if len(frames) < num_frames:
44
+ continue
45
+ self.frames[vid] = frames
46
+ self.videos.append(vid)
47
+
48
+ print('%d out of %d videos accepted in %s.' % (len(self.videos), len(vid_list), im_root))
49
+
50
+ # These set of transform is the same for im/gt pairs, but different among the 3 sampled frames
51
+ self.pair_im_lone_transform = transforms.Compose([
52
+ transforms.ColorJitter(0.01, 0.01, 0.01, 0),
53
+ ])
54
+
55
+ self.pair_im_dual_transform = transforms.Compose([
56
+ transforms.RandomAffine(degrees=0 if finetune or self.is_bl else 15, shear=0 if finetune or self.is_bl else 10, interpolation=InterpolationMode.BILINEAR, fill=im_mean),
57
+ ])
58
+
59
+ self.pair_gt_dual_transform = transforms.Compose([
60
+ transforms.RandomAffine(degrees=0 if finetune or self.is_bl else 15, shear=0 if finetune or self.is_bl else 10, interpolation=InterpolationMode.NEAREST, fill=0),
61
+ ])
62
+
63
+ # These transform are the same for all pairs in the sampled sequence
64
+ self.all_im_lone_transform = transforms.Compose([
65
+ transforms.ColorJitter(0.1, 0.03, 0.03, 0),
66
+ # transforms.RandomGrayscale(0.05),
67
+ ])
68
+
69
+ patchsz = 448 # 224
70
+ self.all_im_dual_transform = transforms.Compose([
71
+ transforms.RandomHorizontalFlip(),
72
+ transforms.RandomResizedCrop((patchsz, patchsz), scale=(0.36,1.00), interpolation=InterpolationMode.BILINEAR)
73
+ ])
74
+
75
+ self.all_gt_dual_transform = transforms.Compose([
76
+ transforms.RandomHorizontalFlip(),
77
+ transforms.RandomResizedCrop((patchsz, patchsz), scale=(0.36,1.00), interpolation=InterpolationMode.NEAREST)
78
+ ])
79
+
80
+ # Final transform without randomness
81
+ self.final_im_transform = transforms.Compose([
82
+ RGB2Lab(),
83
+ ToTensor(),
84
+ im_rgb2lab_normalization,
85
+ ])
86
+
87
+ def __getitem__(self, idx):
88
+ video = self.videos[idx]
89
+ info = {}
90
+ info['name'] = video
91
+
92
+ vid_im_path = path.join(self.im_root, video)
93
+ vid_gt_path = path.join(self.gt_root, video)
94
+ frames = self.frames[video]
95
+
96
+ trials = 0
97
+ while trials < 5:
98
+ info['frames'] = [] # Appended with actual frames
99
+
100
+ num_frames = self.num_frames
101
+ length = len(frames)
102
+ this_max_jump = min(len(frames), self.max_jump)
103
+
104
+ # iterative sampling
105
+ frames_idx = [np.random.randint(length)]
106
+ acceptable_set = set(range(max(0, frames_idx[-1]-this_max_jump), min(length, frames_idx[-1]+this_max_jump+1))).difference(set(frames_idx))
107
+ while(len(frames_idx) < num_frames):
108
+ idx = np.random.choice(list(acceptable_set))
109
+ frames_idx.append(idx)
110
+ new_set = set(range(max(0, frames_idx[-1]-this_max_jump), min(length, frames_idx[-1]+this_max_jump+1)))
111
+ acceptable_set = acceptable_set.union(new_set).difference(set(frames_idx))
112
+
113
+ frames_idx = sorted(frames_idx)
114
+ if np.random.rand() < 0.5:
115
+ # Reverse time
116
+ frames_idx = frames_idx[::-1]
117
+
118
+ sequence_seed = np.random.randint(2147483647)
119
+ images = []
120
+ masks = []
121
+ target_objects = []
122
+ for f_idx in frames_idx:
123
+ jpg_name = frames[f_idx]
124
+ png_name = jpg_name.replace('.jpg', '.png')
125
+ info['frames'].append(jpg_name)
126
+
127
+ reseed(sequence_seed)
128
+ this_im = Image.open(path.join(vid_im_path, jpg_name)).convert('RGB')
129
+ this_im = self.all_im_dual_transform(this_im)
130
+ this_im = self.all_im_lone_transform(this_im)
131
+
132
+ reseed(sequence_seed)
133
+ this_gt = Image.open(path.join(vid_gt_path, png_name)).convert('P')
134
+ this_gt = self.all_gt_dual_transform(this_gt)
135
+
136
+ pairwise_seed = np.random.randint(2147483647)
137
+ reseed(pairwise_seed)
138
+ this_im = self.pair_im_dual_transform(this_im)
139
+ this_im = self.pair_im_lone_transform(this_im)
140
+
141
+ reseed(pairwise_seed)
142
+ this_gt = self.pair_gt_dual_transform(this_gt)
143
+
144
+ this_im = self.final_im_transform(this_im)
145
+ # print('1', torch.max(this_im[:1,:,:]), torch.min(this_im[:1,:,:]))
146
+ # print('2', torch.max(this_im[1:3,:,:]), torch.min(this_im[1:3,:,:]))
147
+ # print('3', torch.max(this_im), torch.min(this_im));assert 1==0
148
+ # print(this_im.size());assert 1==0
149
+
150
+ this_gt = np.array(this_gt)
151
+
152
+ this_im_l = this_im[:1,:,:]
153
+ this_im_ab = this_im[1:3,:,:]
154
+ # print(this_im_l.size(), this_im_ab.size());assert 1==0
155
+
156
+ # images.append(this_im_l)
157
+ # masks.append(this_im_ab)
158
+
159
+ this_im_lll = this_im_l.repeat(3,1,1)
160
+ images.append(this_im_lll)
161
+ masks.append(this_im_ab)
162
+
163
+ images = torch.stack(images, 0)
164
+ # print(images.size());assert 1==0
165
+
166
+ # target_objects = labels.tolist()
167
+ break
168
+
169
+ first_frame_gt = masks[0].unsqueeze(0)
170
+ # print(first_frame_gt.size());assert 1==0
171
+
172
+ info['num_objects'] = 2
173
+
174
+ masks = np.stack(masks, 0)
175
+ # print(np.shape(masks));assert 1==0
176
+
177
+
178
+ cls_gt = masks
179
+
180
+ # # Generate one-hot ground-truth
181
+ # cls_gt = np.zeros((self.num_frames, 384, 384), dtype=np.int)
182
+ # first_frame_gt = np.zeros((1, self.max_num_obj, 384, 384), dtype=np.int)
183
+ # for i, l in enumerate(target_objects):
184
+ # this_mask = (masks==l)
185
+ # cls_gt[this_mask] = i+1
186
+ # first_frame_gt[0,i] = (this_mask[0])
187
+ # cls_gt = np.expand_dims(cls_gt, 1)
188
+
189
+ # 1 if object exist, 0 otherwise
190
+ selector = [1 if i < info['num_objects'] else 0 for i in range(self.max_num_obj)]
191
+
192
+ # print(info['num_objects'], self.max_num_obj, selector);assert 1==0
193
+
194
+ selector = torch.FloatTensor(selector)
195
+
196
+ # print(images.size(), np.shape(first_frame_gt), np.shape(cls_gt));assert 1==0
197
+ ### torch.Size([8, 3, 384, 384]) torch.Size([1, 2, 384, 384]) (8, 2, 384, 384)
198
+
199
+ data = {
200
+ 'rgb': images,
201
+ 'first_frame_gt': first_frame_gt,
202
+ 'cls_gt': cls_gt,
203
+ 'selector': selector,
204
+ 'info': info,
205
+ }
206
+
207
+ return data
208
+
209
+ def __len__(self):
210
+ return len(self.videos)
inference/__init__.py ADDED
File without changes
inference/data/__init__.py ADDED
File without changes
inference/data/mask_mapper.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+
4
+ from dataset.util import all_to_onehot
5
+
6
+
7
+ class MaskMapper:
8
+ """
9
+ This class is used to convert a indexed-mask to a one-hot representation.
10
+ It also takes care of remapping non-continuous indices
11
+ It has two modes:
12
+ 1. Default. Only masks with new indices are supposed to go into the remapper.
13
+ This is also the case for YouTubeVOS.
14
+ i.e., regions with index 0 are not "background", but "don't care".
15
+
16
+ 2. Exhaustive. Regions with index 0 are considered "background".
17
+ Every single pixel is considered to be "labeled".
18
+ """
19
+ def __init__(self):
20
+ self.labels = []
21
+ self.remappings = {}
22
+
23
+ # if coherent, no mapping is required
24
+ self.coherent = True
25
+
26
+ def convert_mask(self, mask, exhaustive=False):
27
+ # mask is in index representation, H*W numpy array
28
+ labels = np.unique(mask).astype(np.uint8)
29
+ labels = labels[labels!=0].tolist()
30
+
31
+ new_labels = list(set(labels) - set(self.labels))
32
+ # print('new_labels', new_labels) # [255]
33
+ if not exhaustive:
34
+ assert len(new_labels) == len(labels), 'Old labels found in non-exhaustive mode'
35
+
36
+ # add new remappings
37
+ for i, l in enumerate(new_labels):
38
+ self.remappings[l] = i+len(self.labels)+1
39
+ if self.coherent and i+len(self.labels)+1 != l:
40
+ self.coherent = False
41
+
42
+ if exhaustive:
43
+ new_mapped_labels = range(1, len(self.labels)+len(new_labels)+1)
44
+ else:
45
+ if self.coherent:
46
+ new_mapped_labels = new_labels
47
+ else:
48
+ new_mapped_labels = range(len(self.labels)+1, len(self.labels)+len(new_labels)+1)
49
+ # print(list(new_mapped_labels));assert 1==0 # [1]
50
+
51
+ self.labels.extend(new_labels)
52
+ # print(self.labels);assert 1==0 # [255]
53
+ mask = torch.from_numpy(all_to_onehot(mask, self.labels)).float()
54
+
55
+ # mask num_objects*H*W; new_mapped_labels: [num_objects]
56
+ return mask, new_mapped_labels
57
+
58
+
59
+ def remap_index_mask(self, mask):
60
+ # mask is in index representation, H*W numpy array
61
+ if self.coherent:
62
+ return mask
63
+
64
+ new_mask = np.zeros_like(mask)
65
+ for l, i in self.remappings.items():
66
+ new_mask[mask==i] = l
67
+ return new_mask
inference/data/test_datasets.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from os import path
3
+ import json
4
+
5
+ from inference.data.video_reader import VideoReader_221128_TransColorization
6
+
7
+ class DAVISTestDataset_221128_TransColorization_batch:
8
+ def __init__(self, data_root, imset='2017/val.txt', size=-1):
9
+ self.image_dir = data_root
10
+ self.mask_dir = imset
11
+ self.size_dir = data_root
12
+ self.size = size
13
+
14
+ self.vid_list = [clip_name for clip_name in sorted(os.listdir(data_root)) if clip_name != '.DS_Store']
15
+
16
+ # print(lst, len(lst), self.vid_list, self.vid_list_DAVIS2016, path.join(data_root, 'ImageSets', imset));assert 1==0
17
+
18
+ def get_datasets(self):
19
+ for video in self.vid_list:
20
+ # print(self.image_dir, video, path.join(self.image_dir, video));assert 1==0
21
+ yield VideoReader_221128_TransColorization(video,
22
+ path.join(self.image_dir, video),
23
+ path.join(self.mask_dir, video),
24
+ size=self.size,
25
+ size_dir=path.join(self.size_dir, video),
26
+ )
27
+
28
+ def __len__(self):
29
+ return len(self.vid_list)
inference/data/video_reader.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from os import path
3
+
4
+ from torch.utils.data.dataset import Dataset
5
+ from torchvision import transforms
6
+ from torchvision.transforms import InterpolationMode
7
+ import torch.nn.functional as Ff
8
+ from PIL import Image
9
+ import numpy as np
10
+
11
+ from dataset.range_transform import im_normalization, im_rgb2lab_normalization, ToTensor, RGB2Lab
12
+
13
+ class VideoReader_221128_TransColorization(Dataset):
14
+ """
15
+ This class is used to read a video, one frame at a time
16
+ """
17
+ def __init__(self, vid_name, image_dir, mask_dir, size=-1, to_save=None, use_all_mask=False, size_dir=None):
18
+ """
19
+ image_dir - points to a directory of jpg images
20
+ mask_dir - points to a directory of png masks
21
+ size - resize min. side to size. Does nothing if <0.
22
+ to_save - optionally contains a list of file names without extensions
23
+ where the segmentation mask is required
24
+ use_all_mask - when true, read all available mask in mask_dir.
25
+ Default false. Set to true for YouTubeVOS validation.
26
+ """
27
+ self.vid_name = vid_name
28
+ self.image_dir = image_dir
29
+ self.mask_dir = mask_dir
30
+ self.to_save = to_save
31
+ self.use_all_mask = use_all_mask
32
+ # print('use_all_mask', use_all_mask);assert 1==0
33
+ if size_dir is None:
34
+ self.size_dir = self.image_dir
35
+ else:
36
+ self.size_dir = size_dir
37
+
38
+ self.frames = [img for img in sorted(os.listdir(self.image_dir)) if img.endswith('.jpg') or img.endswith('.png')]
39
+ self.palette = Image.open(path.join(mask_dir, sorted(os.listdir(mask_dir))[0])).getpalette()
40
+ self.first_gt_path = path.join(self.mask_dir, sorted(os.listdir(self.mask_dir))[0])
41
+ self.suffix = self.first_gt_path.split('.')[-1]
42
+
43
+ if size < 0:
44
+ self.im_transform = transforms.Compose([
45
+ RGB2Lab(),
46
+ ToTensor(),
47
+ im_rgb2lab_normalization,
48
+ ])
49
+ else:
50
+ self.im_transform = transforms.Compose([
51
+ transforms.ToTensor(),
52
+ im_normalization,
53
+ transforms.Resize(size, interpolation=InterpolationMode.BILINEAR),
54
+ ])
55
+ self.size = size
56
+
57
+
58
+ def __getitem__(self, idx):
59
+ frame = self.frames[idx]
60
+ info = {}
61
+ data = {}
62
+ info['frame'] = frame
63
+ info['vid_name'] = self.vid_name
64
+ info['save'] = (self.to_save is None) or (frame[:-4] in self.to_save)
65
+
66
+ im_path = path.join(self.image_dir, frame)
67
+ img = Image.open(im_path).convert('RGB')
68
+
69
+ if self.image_dir == self.size_dir:
70
+ shape = np.array(img).shape[:2]
71
+ else:
72
+ size_path = path.join(self.size_dir, frame)
73
+ size_im = Image.open(size_path).convert('RGB')
74
+ shape = np.array(size_im).shape[:2]
75
+
76
+ gt_path = path.join(self.mask_dir, sorted(os.listdir(self.mask_dir))[idx]) if idx < len(os.listdir(self.mask_dir)) else None
77
+
78
+ img = self.im_transform(img)
79
+ img_l = img[:1,:,:]
80
+ img_lll = img_l.repeat(3,1,1)
81
+
82
+ load_mask = self.use_all_mask or (gt_path == self.first_gt_path)
83
+ if load_mask and path.exists(gt_path):
84
+ mask = Image.open(gt_path).convert('RGB')
85
+ mask = self.im_transform(mask)
86
+ mask_ab = mask[1:3,:,:]
87
+ data['mask'] = mask_ab
88
+
89
+ info['shape'] = shape
90
+ info['need_resize'] = not (self.size < 0)
91
+ data['rgb'] = img_lll
92
+ data['info'] = info
93
+
94
+ return data
95
+
96
+ def resize_mask(self, mask):
97
+ # mask transform is applied AFTER mapper, so we need to post-process it in eval.py
98
+ h, w = mask.shape[-2:]
99
+ min_hw = min(h, w)
100
+ return Ff.interpolate(mask, (int(h/min_hw*self.size), int(w/min_hw*self.size)),
101
+ mode='nearest')
102
+
103
+ def get_palette(self):
104
+ return self.palette
105
+
106
+ def __len__(self):
107
+ return len(self.frames)
inference/inference_core.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from inference.memory_manager import MemoryManager
2
+ from model.network import ColorMNet
3
+ from model.aggregate import aggregate
4
+
5
+ from util.tensor_util import pad_divide_by, unpad
6
+ import torch
7
+
8
+ class InferenceCore:
9
+ def __init__(self, network:ColorMNet, config):
10
+ self.config = config
11
+ self.network = network
12
+ self.mem_every = config['mem_every']
13
+ self.deep_update_every = config['deep_update_every']
14
+ self.enable_long_term = config['enable_long_term']
15
+
16
+ # if deep_update_every < 0, synchronize deep update with memory frame
17
+ self.deep_update_sync = (self.deep_update_every < 0)
18
+
19
+ self.clear_memory()
20
+ self.all_labels = None
21
+
22
+ self.last_ti_key = None
23
+ self.last_ti_value = None
24
+
25
+ def clear_memory(self):
26
+ self.curr_ti = -1
27
+ self.last_mem_ti = 0
28
+ if not self.deep_update_sync:
29
+ self.last_deep_update_ti = -self.deep_update_every
30
+ self.memory = MemoryManager(config=self.config)
31
+
32
+ def update_config(self, config):
33
+ self.mem_every = config['mem_every']
34
+ self.deep_update_every = config['deep_update_every']
35
+ self.enable_long_term = config['enable_long_term']
36
+
37
+ # if deep_update_every < 0, synchronize deep update with memory frame
38
+ self.deep_update_sync = (self.deep_update_every < 0)
39
+ self.memory.update_config(config)
40
+
41
+ def set_all_labels(self, all_labels):
42
+ # self.all_labels = [l.item() for l in all_labels]
43
+ self.all_labels = all_labels
44
+
45
+ def step(self, image, mask=None, valid_labels=None, end=False):
46
+ # image: 3*H*W
47
+ # mask: num_objects*H*W or None
48
+ self.curr_ti += 1
49
+ divide_by = 112 # 16
50
+ image, self.pad = pad_divide_by(image, divide_by)
51
+ image = image.unsqueeze(0) # add the batch dimension
52
+
53
+ is_mem_frame = ((self.curr_ti-self.last_mem_ti >= self.mem_every) or (mask is not None)) and (not end)
54
+ need_segment = (self.curr_ti > 0) and ((valid_labels is None) or (len(self.all_labels) != len(valid_labels)))
55
+ is_deep_update = (
56
+ (self.deep_update_sync and is_mem_frame) or # synchronized
57
+ (not self.deep_update_sync and self.curr_ti-self.last_deep_update_ti >= self.deep_update_every) # no-sync
58
+ ) and (not end)
59
+ is_normal_update = (not self.deep_update_sync or not is_deep_update) and (not end)
60
+
61
+ key, shrinkage, selection, f16, f8, f4 = self.network.encode_key(image,
62
+ need_ek=(self.enable_long_term or need_segment),
63
+ need_sk=is_mem_frame)
64
+ multi_scale_features = (f16, f8, f4)
65
+
66
+ # segment the current frame is needed
67
+ if need_segment:
68
+ memory_readout = self.memory.match_memory(key, selection).unsqueeze(0)
69
+
70
+ # short term memory
71
+ batch, num_objects, value_dim, h, w = self.last_ti_value.shape
72
+ last_ti_value = self.last_ti_value.flatten(start_dim=1, end_dim=2)
73
+ memory_value_short, _ = self.network.short_term_attn(key, self.last_ti_key, last_ti_value, None, key.shape[-2:])
74
+ memory_value_short = memory_value_short.permute(1, 2, 0).view(batch, num_objects, value_dim, h, w)
75
+ memory_readout += memory_value_short
76
+
77
+ hidden, _, pred_prob_with_bg = self.network.segment(multi_scale_features, memory_readout,
78
+ self.memory.get_hidden(), h_out=is_normal_update, strip_bg=False)
79
+ # remove batch dim
80
+ pred_prob_with_bg = pred_prob_with_bg[0]
81
+ pred_prob_no_bg = pred_prob_with_bg
82
+ if is_normal_update:
83
+ self.memory.set_hidden(hidden)
84
+ else:
85
+ pred_prob_no_bg = pred_prob_with_bg = None
86
+
87
+ # use the input mask if any
88
+ if mask is not None:
89
+ mask, _ = pad_divide_by(mask, divide_by)
90
+
91
+ pred_prob_with_bg = mask
92
+
93
+ self.memory.create_hidden_state(2, key)
94
+
95
+ # save as memory if needed
96
+ if is_mem_frame:
97
+ value, hidden = self.network.encode_value(image, f16, self.memory.get_hidden(),
98
+ pred_prob_with_bg.unsqueeze(0), is_deep_update=is_deep_update)
99
+
100
+ self.memory.add_memory(key, shrinkage, value, self.all_labels,
101
+ selection=selection if self.enable_long_term else None)
102
+ self.last_mem_ti = self.curr_ti
103
+
104
+ self.last_ti_key = key
105
+ self.last_ti_value = value
106
+
107
+ if is_deep_update:
108
+ self.memory.set_hidden(hidden)
109
+ self.last_deep_update_ti = self.curr_ti
110
+
111
+ return unpad(pred_prob_with_bg, self.pad)
inference/interact/__init__.py ADDED
File without changes
inference/interact/fbrs/LICENSE ADDED
@@ -0,0 +1,373 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Mozilla Public License Version 2.0
2
+ ==================================
3
+
4
+ 1. Definitions
5
+ --------------
6
+
7
+ 1.1. "Contributor"
8
+ means each individual or legal entity that creates, contributes to
9
+ the creation of, or owns Covered Software.
10
+
11
+ 1.2. "Contributor Version"
12
+ means the combination of the Contributions of others (if any) used
13
+ by a Contributor and that particular Contributor's Contribution.
14
+
15
+ 1.3. "Contribution"
16
+ means Covered Software of a particular Contributor.
17
+
18
+ 1.4. "Covered Software"
19
+ means Source Code Form to which the initial Contributor has attached
20
+ the notice in Exhibit A, the Executable Form of such Source Code
21
+ Form, and Modifications of such Source Code Form, in each case
22
+ including portions thereof.
23
+
24
+ 1.5. "Incompatible With Secondary Licenses"
25
+ means
26
+
27
+ (a) that the initial Contributor has attached the notice described
28
+ in Exhibit B to the Covered Software; or
29
+
30
+ (b) that the Covered Software was made available under the terms of
31
+ version 1.1 or earlier of the License, but not also under the
32
+ terms of a Secondary License.
33
+
34
+ 1.6. "Executable Form"
35
+ means any form of the work other than Source Code Form.
36
+
37
+ 1.7. "Larger Work"
38
+ means a work that combines Covered Software with other material, in
39
+ a separate file or files, that is not Covered Software.
40
+
41
+ 1.8. "License"
42
+ means this document.
43
+
44
+ 1.9. "Licensable"
45
+ means having the right to grant, to the maximum extent possible,
46
+ whether at the time of the initial grant or subsequently, any and
47
+ all of the rights conveyed by this License.
48
+
49
+ 1.10. "Modifications"
50
+ means any of the following:
51
+
52
+ (a) any file in Source Code Form that results from an addition to,
53
+ deletion from, or modification of the contents of Covered
54
+ Software; or
55
+
56
+ (b) any new file in Source Code Form that contains any Covered
57
+ Software.
58
+
59
+ 1.11. "Patent Claims" of a Contributor
60
+ means any patent claim(s), including without limitation, method,
61
+ process, and apparatus claims, in any patent Licensable by such
62
+ Contributor that would be infringed, but for the grant of the
63
+ License, by the making, using, selling, offering for sale, having
64
+ made, import, or transfer of either its Contributions or its
65
+ Contributor Version.
66
+
67
+ 1.12. "Secondary License"
68
+ means either the GNU General Public License, Version 2.0, the GNU
69
+ Lesser General Public License, Version 2.1, the GNU Affero General
70
+ Public License, Version 3.0, or any later versions of those
71
+ licenses.
72
+
73
+ 1.13. "Source Code Form"
74
+ means the form of the work preferred for making modifications.
75
+
76
+ 1.14. "You" (or "Your")
77
+ means an individual or a legal entity exercising rights under this
78
+ License. For legal entities, "You" includes any entity that
79
+ controls, is controlled by, or is under common control with You. For
80
+ purposes of this definition, "control" means (a) the power, direct
81
+ or indirect, to cause the direction or management of such entity,
82
+ whether by contract or otherwise, or (b) ownership of more than
83
+ fifty percent (50%) of the outstanding shares or beneficial
84
+ ownership of such entity.
85
+
86
+ 2. License Grants and Conditions
87
+ --------------------------------
88
+
89
+ 2.1. Grants
90
+
91
+ Each Contributor hereby grants You a world-wide, royalty-free,
92
+ non-exclusive license:
93
+
94
+ (a) under intellectual property rights (other than patent or trademark)
95
+ Licensable by such Contributor to use, reproduce, make available,
96
+ modify, display, perform, distribute, and otherwise exploit its
97
+ Contributions, either on an unmodified basis, with Modifications, or
98
+ as part of a Larger Work; and
99
+
100
+ (b) under Patent Claims of such Contributor to make, use, sell, offer
101
+ for sale, have made, import, and otherwise transfer either its
102
+ Contributions or its Contributor Version.
103
+
104
+ 2.2. Effective Date
105
+
106
+ The licenses granted in Section 2.1 with respect to any Contribution
107
+ become effective for each Contribution on the date the Contributor first
108
+ distributes such Contribution.
109
+
110
+ 2.3. Limitations on Grant Scope
111
+
112
+ The licenses granted in this Section 2 are the only rights granted under
113
+ this License. No additional rights or licenses will be implied from the
114
+ distribution or licensing of Covered Software under this License.
115
+ Notwithstanding Section 2.1(b) above, no patent license is granted by a
116
+ Contributor:
117
+
118
+ (a) for any code that a Contributor has removed from Covered Software;
119
+ or
120
+
121
+ (b) for infringements caused by: (i) Your and any other third party's
122
+ modifications of Covered Software, or (ii) the combination of its
123
+ Contributions with other software (except as part of its Contributor
124
+ Version); or
125
+
126
+ (c) under Patent Claims infringed by Covered Software in the absence of
127
+ its Contributions.
128
+
129
+ This License does not grant any rights in the trademarks, service marks,
130
+ or logos of any Contributor (except as may be necessary to comply with
131
+ the notice requirements in Section 3.4).
132
+
133
+ 2.4. Subsequent Licenses
134
+
135
+ No Contributor makes additional grants as a result of Your choice to
136
+ distribute the Covered Software under a subsequent version of this
137
+ License (see Section 10.2) or under the terms of a Secondary License (if
138
+ permitted under the terms of Section 3.3).
139
+
140
+ 2.5. Representation
141
+
142
+ Each Contributor represents that the Contributor believes its
143
+ Contributions are its original creation(s) or it has sufficient rights
144
+ to grant the rights to its Contributions conveyed by this License.
145
+
146
+ 2.6. Fair Use
147
+
148
+ This License is not intended to limit any rights You have under
149
+ applicable copyright doctrines of fair use, fair dealing, or other
150
+ equivalents.
151
+
152
+ 2.7. Conditions
153
+
154
+ Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted
155
+ in Section 2.1.
156
+
157
+ 3. Responsibilities
158
+ -------------------
159
+
160
+ 3.1. Distribution of Source Form
161
+
162
+ All distribution of Covered Software in Source Code Form, including any
163
+ Modifications that You create or to which You contribute, must be under
164
+ the terms of this License. You must inform recipients that the Source
165
+ Code Form of the Covered Software is governed by the terms of this
166
+ License, and how they can obtain a copy of this License. You may not
167
+ attempt to alter or restrict the recipients' rights in the Source Code
168
+ Form.
169
+
170
+ 3.2. Distribution of Executable Form
171
+
172
+ If You distribute Covered Software in Executable Form then:
173
+
174
+ (a) such Covered Software must also be made available in Source Code
175
+ Form, as described in Section 3.1, and You must inform recipients of
176
+ the Executable Form how they can obtain a copy of such Source Code
177
+ Form by reasonable means in a timely manner, at a charge no more
178
+ than the cost of distribution to the recipient; and
179
+
180
+ (b) You may distribute such Executable Form under the terms of this
181
+ License, or sublicense it under different terms, provided that the
182
+ license for the Executable Form does not attempt to limit or alter
183
+ the recipients' rights in the Source Code Form under this License.
184
+
185
+ 3.3. Distribution of a Larger Work
186
+
187
+ You may create and distribute a Larger Work under terms of Your choice,
188
+ provided that You also comply with the requirements of this License for
189
+ the Covered Software. If the Larger Work is a combination of Covered
190
+ Software with a work governed by one or more Secondary Licenses, and the
191
+ Covered Software is not Incompatible With Secondary Licenses, this
192
+ License permits You to additionally distribute such Covered Software
193
+ under the terms of such Secondary License(s), so that the recipient of
194
+ the Larger Work may, at their option, further distribute the Covered
195
+ Software under the terms of either this License or such Secondary
196
+ License(s).
197
+
198
+ 3.4. Notices
199
+
200
+ You may not remove or alter the substance of any license notices
201
+ (including copyright notices, patent notices, disclaimers of warranty,
202
+ or limitations of liability) contained within the Source Code Form of
203
+ the Covered Software, except that You may alter any license notices to
204
+ the extent required to remedy known factual inaccuracies.
205
+
206
+ 3.5. Application of Additional Terms
207
+
208
+ You may choose to offer, and to charge a fee for, warranty, support,
209
+ indemnity or liability obligations to one or more recipients of Covered
210
+ Software. However, You may do so only on Your own behalf, and not on
211
+ behalf of any Contributor. You must make it absolutely clear that any
212
+ such warranty, support, indemnity, or liability obligation is offered by
213
+ You alone, and You hereby agree to indemnify every Contributor for any
214
+ liability incurred by such Contributor as a result of warranty, support,
215
+ indemnity or liability terms You offer. You may include additional
216
+ disclaimers of warranty and limitations of liability specific to any
217
+ jurisdiction.
218
+
219
+ 4. Inability to Comply Due to Statute or Regulation
220
+ ---------------------------------------------------
221
+
222
+ If it is impossible for You to comply with any of the terms of this
223
+ License with respect to some or all of the Covered Software due to
224
+ statute, judicial order, or regulation then You must: (a) comply with
225
+ the terms of this License to the maximum extent possible; and (b)
226
+ describe the limitations and the code they affect. Such description must
227
+ be placed in a text file included with all distributions of the Covered
228
+ Software under this License. Except to the extent prohibited by statute
229
+ or regulation, such description must be sufficiently detailed for a
230
+ recipient of ordinary skill to be able to understand it.
231
+
232
+ 5. Termination
233
+ --------------
234
+
235
+ 5.1. The rights granted under this License will terminate automatically
236
+ if You fail to comply with any of its terms. However, if You become
237
+ compliant, then the rights granted under this License from a particular
238
+ Contributor are reinstated (a) provisionally, unless and until such
239
+ Contributor explicitly and finally terminates Your grants, and (b) on an
240
+ ongoing basis, if such Contributor fails to notify You of the
241
+ non-compliance by some reasonable means prior to 60 days after You have
242
+ come back into compliance. Moreover, Your grants from a particular
243
+ Contributor are reinstated on an ongoing basis if such Contributor
244
+ notifies You of the non-compliance by some reasonable means, this is the
245
+ first time You have received notice of non-compliance with this License
246
+ from such Contributor, and You become compliant prior to 30 days after
247
+ Your receipt of the notice.
248
+
249
+ 5.2. If You initiate litigation against any entity by asserting a patent
250
+ infringement claim (excluding declaratory judgment actions,
251
+ counter-claims, and cross-claims) alleging that a Contributor Version
252
+ directly or indirectly infringes any patent, then the rights granted to
253
+ You by any and all Contributors for the Covered Software under Section
254
+ 2.1 of this License shall terminate.
255
+
256
+ 5.3. In the event of termination under Sections 5.1 or 5.2 above, all
257
+ end user license agreements (excluding distributors and resellers) which
258
+ have been validly granted by You or Your distributors under this License
259
+ prior to termination shall survive termination.
260
+
261
+ ************************************************************************
262
+ * *
263
+ * 6. Disclaimer of Warranty *
264
+ * ------------------------- *
265
+ * *
266
+ * Covered Software is provided under this License on an "as is" *
267
+ * basis, without warranty of any kind, either expressed, implied, or *
268
+ * statutory, including, without limitation, warranties that the *
269
+ * Covered Software is free of defects, merchantable, fit for a *
270
+ * particular purpose or non-infringing. The entire risk as to the *
271
+ * quality and performance of the Covered Software is with You. *
272
+ * Should any Covered Software prove defective in any respect, You *
273
+ * (not any Contributor) assume the cost of any necessary servicing, *
274
+ * repair, or correction. This disclaimer of warranty constitutes an *
275
+ * essential part of this License. No use of any Covered Software is *
276
+ * authorized under this License except under this disclaimer. *
277
+ * *
278
+ ************************************************************************
279
+
280
+ ************************************************************************
281
+ * *
282
+ * 7. Limitation of Liability *
283
+ * -------------------------- *
284
+ * *
285
+ * Under no circumstances and under no legal theory, whether tort *
286
+ * (including negligence), contract, or otherwise, shall any *
287
+ * Contributor, or anyone who distributes Covered Software as *
288
+ * permitted above, be liable to You for any direct, indirect, *
289
+ * special, incidental, or consequential damages of any character *
290
+ * including, without limitation, damages for lost profits, loss of *
291
+ * goodwill, work stoppage, computer failure or malfunction, or any *
292
+ * and all other commercial damages or losses, even if such party *
293
+ * shall have been informed of the possibility of such damages. This *
294
+ * limitation of liability shall not apply to liability for death or *
295
+ * personal injury resulting from such party's negligence to the *
296
+ * extent applicable law prohibits such limitation. Some *
297
+ * jurisdictions do not allow the exclusion or limitation of *
298
+ * incidental or consequential damages, so this exclusion and *
299
+ * limitation may not apply to You. *
300
+ * *
301
+ ************************************************************************
302
+
303
+ 8. Litigation
304
+ -------------
305
+
306
+ Any litigation relating to this License may be brought only in the
307
+ courts of a jurisdiction where the defendant maintains its principal
308
+ place of business and such litigation shall be governed by laws of that
309
+ jurisdiction, without reference to its conflict-of-law provisions.
310
+ Nothing in this Section shall prevent a party's ability to bring
311
+ cross-claims or counter-claims.
312
+
313
+ 9. Miscellaneous
314
+ ----------------
315
+
316
+ This License represents the complete agreement concerning the subject
317
+ matter hereof. If any provision of this License is held to be
318
+ unenforceable, such provision shall be reformed only to the extent
319
+ necessary to make it enforceable. Any law or regulation which provides
320
+ that the language of a contract shall be construed against the drafter
321
+ shall not be used to construe this License against a Contributor.
322
+
323
+ 10. Versions of the License
324
+ ---------------------------
325
+
326
+ 10.1. New Versions
327
+
328
+ Mozilla Foundation is the license steward. Except as provided in Section
329
+ 10.3, no one other than the license steward has the right to modify or
330
+ publish new versions of this License. Each version will be given a
331
+ distinguishing version number.
332
+
333
+ 10.2. Effect of New Versions
334
+
335
+ You may distribute the Covered Software under the terms of the version
336
+ of the License under which You originally received the Covered Software,
337
+ or under the terms of any subsequent version published by the license
338
+ steward.
339
+
340
+ 10.3. Modified Versions
341
+
342
+ If you create software not governed by this License, and you want to
343
+ create a new license for such software, you may create and use a
344
+ modified version of this License if you rename the license and remove
345
+ any references to the name of the license steward (except to note that
346
+ such modified license differs from this License).
347
+
348
+ 10.4. Distributing Source Code Form that is Incompatible With Secondary
349
+ Licenses
350
+
351
+ If You choose to distribute Source Code Form that is Incompatible With
352
+ Secondary Licenses under the terms of this version of the License, the
353
+ notice described in Exhibit B of this License must be attached.
354
+
355
+ Exhibit A - Source Code Form License Notice
356
+ -------------------------------------------
357
+
358
+ This Source Code Form is subject to the terms of the Mozilla Public
359
+ License, v. 2.0. If a copy of the MPL was not distributed with this
360
+ file, You can obtain one at http://mozilla.org/MPL/2.0/.
361
+
362
+ If it is not possible or desirable to put the notice in a particular
363
+ file, then You may include the notice in a location (such as a LICENSE
364
+ file in a relevant directory) where a recipient would be likely to look
365
+ for such a notice.
366
+
367
+ You may add additional accurate notices of copyright ownership.
368
+
369
+ Exhibit B - "Incompatible With Secondary Licenses" Notice
370
+ ---------------------------------------------------------
371
+
372
+ This Source Code Form is "Incompatible With Secondary Licenses", as
373
+ defined by the Mozilla Public License, v. 2.0.
inference/interact/fbrs/__init__.py ADDED
File without changes
inference/interact/fbrs/controller.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from ..fbrs.inference import clicker
4
+ from ..fbrs.inference.predictors import get_predictor
5
+
6
+
7
+ class InteractiveController:
8
+ def __init__(self, net, device, predictor_params, prob_thresh=0.5):
9
+ self.net = net.to(device)
10
+ self.prob_thresh = prob_thresh
11
+ self.clicker = clicker.Clicker()
12
+ self.states = []
13
+ self.probs_history = []
14
+ self.object_count = 0
15
+ self._result_mask = None
16
+
17
+ self.image = None
18
+ self.predictor = None
19
+ self.device = device
20
+ self.predictor_params = predictor_params
21
+ self.reset_predictor()
22
+
23
+ def set_image(self, image):
24
+ self.image = image
25
+ self._result_mask = torch.zeros(image.shape[-2:], dtype=torch.uint8)
26
+ self.object_count = 0
27
+ self.reset_last_object()
28
+
29
+ def add_click(self, x, y, is_positive):
30
+ self.states.append({
31
+ 'clicker': self.clicker.get_state(),
32
+ 'predictor': self.predictor.get_states()
33
+ })
34
+
35
+ click = clicker.Click(is_positive=is_positive, coords=(y, x))
36
+ self.clicker.add_click(click)
37
+ pred = self.predictor.get_prediction(self.clicker)
38
+ torch.cuda.empty_cache()
39
+
40
+ if self.probs_history:
41
+ self.probs_history.append((self.probs_history[-1][0], pred))
42
+ else:
43
+ self.probs_history.append((torch.zeros_like(pred), pred))
44
+
45
+ def undo_click(self):
46
+ if not self.states:
47
+ return
48
+
49
+ prev_state = self.states.pop()
50
+ self.clicker.set_state(prev_state['clicker'])
51
+ self.predictor.set_states(prev_state['predictor'])
52
+ self.probs_history.pop()
53
+
54
+ def partially_finish_object(self):
55
+ object_prob = self.current_object_prob
56
+ if object_prob is None:
57
+ return
58
+
59
+ self.probs_history.append((object_prob, torch.zeros_like(object_prob)))
60
+ self.states.append(self.states[-1])
61
+
62
+ self.clicker.reset_clicks()
63
+ self.reset_predictor()
64
+
65
+ def finish_object(self):
66
+ object_prob = self.current_object_prob
67
+ if object_prob is None:
68
+ return
69
+
70
+ self.object_count += 1
71
+ object_mask = object_prob > self.prob_thresh
72
+ self._result_mask[object_mask] = self.object_count
73
+ self.reset_last_object()
74
+
75
+ def reset_last_object(self):
76
+ self.states = []
77
+ self.probs_history = []
78
+ self.clicker.reset_clicks()
79
+ self.reset_predictor()
80
+
81
+ def reset_predictor(self, predictor_params=None):
82
+ if predictor_params is not None:
83
+ self.predictor_params = predictor_params
84
+ self.predictor = get_predictor(self.net, device=self.device,
85
+ **self.predictor_params)
86
+ if self.image is not None:
87
+ self.predictor.set_input_image(self.image)
88
+
89
+ @property
90
+ def current_object_prob(self):
91
+ if self.probs_history:
92
+ current_prob_total, current_prob_additive = self.probs_history[-1]
93
+ return torch.maximum(current_prob_total, current_prob_additive)
94
+ else:
95
+ return None
96
+
97
+ @property
98
+ def is_incomplete_mask(self):
99
+ return len(self.probs_history) > 0
100
+
101
+ @property
102
+ def result_mask(self):
103
+ return self._result_mask.clone()
inference/interact/fbrs/inference/__init__.py ADDED
File without changes
inference/interact/fbrs/inference/clicker.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import namedtuple
2
+
3
+ import numpy as np
4
+ from copy import deepcopy
5
+ from scipy.ndimage import distance_transform_edt
6
+
7
+ Click = namedtuple('Click', ['is_positive', 'coords'])
8
+
9
+
10
+ class Clicker(object):
11
+ def __init__(self, gt_mask=None, init_clicks=None, ignore_label=-1):
12
+ if gt_mask is not None:
13
+ self.gt_mask = gt_mask == 1
14
+ self.not_ignore_mask = gt_mask != ignore_label
15
+ else:
16
+ self.gt_mask = None
17
+
18
+ self.reset_clicks()
19
+
20
+ if init_clicks is not None:
21
+ for click in init_clicks:
22
+ self.add_click(click)
23
+
24
+ def make_next_click(self, pred_mask):
25
+ assert self.gt_mask is not None
26
+ click = self._get_click(pred_mask)
27
+ self.add_click(click)
28
+
29
+ def get_clicks(self, clicks_limit=None):
30
+ return self.clicks_list[:clicks_limit]
31
+
32
+ def _get_click(self, pred_mask, padding=True):
33
+ fn_mask = np.logical_and(np.logical_and(self.gt_mask, np.logical_not(pred_mask)), self.not_ignore_mask)
34
+ fp_mask = np.logical_and(np.logical_and(np.logical_not(self.gt_mask), pred_mask), self.not_ignore_mask)
35
+
36
+ if padding:
37
+ fn_mask = np.pad(fn_mask, ((1, 1), (1, 1)), 'constant')
38
+ fp_mask = np.pad(fp_mask, ((1, 1), (1, 1)), 'constant')
39
+
40
+ fn_mask_dt = distance_transform_edt(fn_mask)
41
+ fp_mask_dt = distance_transform_edt(fp_mask)
42
+
43
+ if padding:
44
+ fn_mask_dt = fn_mask_dt[1:-1, 1:-1]
45
+ fp_mask_dt = fp_mask_dt[1:-1, 1:-1]
46
+
47
+ fn_mask_dt = fn_mask_dt * self.not_clicked_map
48
+ fp_mask_dt = fp_mask_dt * self.not_clicked_map
49
+
50
+ fn_max_dist = np.max(fn_mask_dt)
51
+ fp_max_dist = np.max(fp_mask_dt)
52
+
53
+ is_positive = fn_max_dist > fp_max_dist
54
+ if is_positive:
55
+ coords_y, coords_x = np.where(fn_mask_dt == fn_max_dist) # coords is [y, x]
56
+ else:
57
+ coords_y, coords_x = np.where(fp_mask_dt == fp_max_dist) # coords is [y, x]
58
+
59
+ return Click(is_positive=is_positive, coords=(coords_y[0], coords_x[0]))
60
+
61
+ def add_click(self, click):
62
+ coords = click.coords
63
+
64
+ if click.is_positive:
65
+ self.num_pos_clicks += 1
66
+ else:
67
+ self.num_neg_clicks += 1
68
+
69
+ self.clicks_list.append(click)
70
+ if self.gt_mask is not None:
71
+ self.not_clicked_map[coords[0], coords[1]] = False
72
+
73
+ def _remove_last_click(self):
74
+ click = self.clicks_list.pop()
75
+ coords = click.coords
76
+
77
+ if click.is_positive:
78
+ self.num_pos_clicks -= 1
79
+ else:
80
+ self.num_neg_clicks -= 1
81
+
82
+ if self.gt_mask is not None:
83
+ self.not_clicked_map[coords[0], coords[1]] = True
84
+
85
+ def reset_clicks(self):
86
+ if self.gt_mask is not None:
87
+ self.not_clicked_map = np.ones_like(self.gt_mask, dtype=np.bool)
88
+
89
+ self.num_pos_clicks = 0
90
+ self.num_neg_clicks = 0
91
+
92
+ self.clicks_list = []
93
+
94
+ def get_state(self):
95
+ return deepcopy(self.clicks_list)
96
+
97
+ def set_state(self, state):
98
+ self.reset_clicks()
99
+ for click in state:
100
+ self.add_click(click)
101
+
102
+ def __len__(self):
103
+ return len(self.clicks_list)
inference/interact/fbrs/inference/evaluation.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from time import time
2
+
3
+ import numpy as np
4
+ import torch
5
+
6
+ from ..inference import utils
7
+ from ..inference.clicker import Clicker
8
+
9
+ try:
10
+ get_ipython()
11
+ from tqdm import tqdm_notebook as tqdm
12
+ except NameError:
13
+ from tqdm import tqdm
14
+
15
+
16
+ def evaluate_dataset(dataset, predictor, oracle_eval=False, **kwargs):
17
+ all_ious = []
18
+
19
+ start_time = time()
20
+ for index in tqdm(range(len(dataset)), leave=False):
21
+ sample = dataset.get_sample(index)
22
+ item = dataset[index]
23
+
24
+ if oracle_eval:
25
+ gt_mask = torch.tensor(sample['instances_mask'], dtype=torch.float32)
26
+ gt_mask = gt_mask.unsqueeze(0).unsqueeze(0)
27
+ predictor.opt_functor.mask_loss.set_gt_mask(gt_mask)
28
+ _, sample_ious, _ = evaluate_sample(item['images'], sample['instances_mask'], predictor, **kwargs)
29
+ all_ious.append(sample_ious)
30
+ end_time = time()
31
+ elapsed_time = end_time - start_time
32
+
33
+ return all_ious, elapsed_time
34
+
35
+
36
+ def evaluate_sample(image_nd, instances_mask, predictor, max_iou_thr,
37
+ pred_thr=0.49, max_clicks=20):
38
+ clicker = Clicker(gt_mask=instances_mask)
39
+ pred_mask = np.zeros_like(instances_mask)
40
+ ious_list = []
41
+
42
+ with torch.no_grad():
43
+ predictor.set_input_image(image_nd)
44
+
45
+ for click_number in range(max_clicks):
46
+ clicker.make_next_click(pred_mask)
47
+ pred_probs = predictor.get_prediction(clicker)
48
+ pred_mask = pred_probs > pred_thr
49
+
50
+ iou = utils.get_iou(instances_mask, pred_mask)
51
+ ious_list.append(iou)
52
+
53
+ if iou >= max_iou_thr:
54
+ break
55
+
56
+ return clicker.clicks_list, np.array(ious_list, dtype=np.float32), pred_probs
inference/interact/fbrs/inference/predictors/__init__.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .base import BasePredictor
2
+ from .brs import InputBRSPredictor, FeatureBRSPredictor, HRNetFeatureBRSPredictor
3
+ from .brs_functors import InputOptimizer, ScaleBiasOptimizer
4
+ from ..transforms import ZoomIn
5
+ from ...model.is_hrnet_model import DistMapsHRNetModel
6
+
7
+
8
+ def get_predictor(net, brs_mode, device,
9
+ prob_thresh=0.49,
10
+ with_flip=True,
11
+ zoom_in_params=dict(),
12
+ predictor_params=None,
13
+ brs_opt_func_params=None,
14
+ lbfgs_params=None):
15
+ lbfgs_params_ = {
16
+ 'm': 20,
17
+ 'factr': 0,
18
+ 'pgtol': 1e-8,
19
+ 'maxfun': 20,
20
+ }
21
+
22
+ predictor_params_ = {
23
+ 'optimize_after_n_clicks': 1
24
+ }
25
+
26
+ if zoom_in_params is not None:
27
+ zoom_in = ZoomIn(**zoom_in_params)
28
+ else:
29
+ zoom_in = None
30
+
31
+ if lbfgs_params is not None:
32
+ lbfgs_params_.update(lbfgs_params)
33
+ lbfgs_params_['maxiter'] = 2 * lbfgs_params_['maxfun']
34
+
35
+ if brs_opt_func_params is None:
36
+ brs_opt_func_params = dict()
37
+
38
+ if brs_mode == 'NoBRS':
39
+ if predictor_params is not None:
40
+ predictor_params_.update(predictor_params)
41
+ predictor = BasePredictor(net, device, zoom_in=zoom_in, with_flip=with_flip, **predictor_params_)
42
+ elif brs_mode.startswith('f-BRS'):
43
+ predictor_params_.update({
44
+ 'net_clicks_limit': 8,
45
+ })
46
+ if predictor_params is not None:
47
+ predictor_params_.update(predictor_params)
48
+
49
+ insertion_mode = {
50
+ 'f-BRS-A': 'after_c4',
51
+ 'f-BRS-B': 'after_aspp',
52
+ 'f-BRS-C': 'after_deeplab'
53
+ }[brs_mode]
54
+
55
+ opt_functor = ScaleBiasOptimizer(prob_thresh=prob_thresh,
56
+ with_flip=with_flip,
57
+ optimizer_params=lbfgs_params_,
58
+ **brs_opt_func_params)
59
+
60
+ if isinstance(net, DistMapsHRNetModel):
61
+ FeaturePredictor = HRNetFeatureBRSPredictor
62
+ insertion_mode = {'after_c4': 'A', 'after_aspp': 'A', 'after_deeplab': 'C'}[insertion_mode]
63
+ else:
64
+ FeaturePredictor = FeatureBRSPredictor
65
+
66
+ predictor = FeaturePredictor(net, device,
67
+ opt_functor=opt_functor,
68
+ with_flip=with_flip,
69
+ insertion_mode=insertion_mode,
70
+ zoom_in=zoom_in,
71
+ **predictor_params_)
72
+ elif brs_mode == 'RGB-BRS' or brs_mode == 'DistMap-BRS':
73
+ use_dmaps = brs_mode == 'DistMap-BRS'
74
+
75
+ predictor_params_.update({
76
+ 'net_clicks_limit': 5,
77
+ })
78
+ if predictor_params is not None:
79
+ predictor_params_.update(predictor_params)
80
+
81
+ opt_functor = InputOptimizer(prob_thresh=prob_thresh,
82
+ with_flip=with_flip,
83
+ optimizer_params=lbfgs_params_,
84
+ **brs_opt_func_params)
85
+
86
+ predictor = InputBRSPredictor(net, device,
87
+ optimize_target='dmaps' if use_dmaps else 'rgb',
88
+ opt_functor=opt_functor,
89
+ with_flip=with_flip,
90
+ zoom_in=zoom_in,
91
+ **predictor_params_)
92
+ else:
93
+ raise NotImplementedError
94
+
95
+ return predictor
inference/interact/fbrs/inference/predictors/base.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+
4
+ from ..transforms import AddHorizontalFlip, SigmoidForPred, LimitLongestSide
5
+
6
+
7
+ class BasePredictor(object):
8
+ def __init__(self, net, device,
9
+ net_clicks_limit=None,
10
+ with_flip=False,
11
+ zoom_in=None,
12
+ max_size=None,
13
+ **kwargs):
14
+ self.net = net
15
+ self.with_flip = with_flip
16
+ self.net_clicks_limit = net_clicks_limit
17
+ self.original_image = None
18
+ self.device = device
19
+ self.zoom_in = zoom_in
20
+
21
+ self.transforms = [zoom_in] if zoom_in is not None else []
22
+ if max_size is not None:
23
+ self.transforms.append(LimitLongestSide(max_size=max_size))
24
+ self.transforms.append(SigmoidForPred())
25
+ if with_flip:
26
+ self.transforms.append(AddHorizontalFlip())
27
+
28
+ def set_input_image(self, image_nd):
29
+ for transform in self.transforms:
30
+ transform.reset()
31
+ self.original_image = image_nd.to(self.device)
32
+ if len(self.original_image.shape) == 3:
33
+ self.original_image = self.original_image.unsqueeze(0)
34
+
35
+ def get_prediction(self, clicker):
36
+ clicks_list = clicker.get_clicks()
37
+
38
+ image_nd, clicks_lists, is_image_changed = self.apply_transforms(
39
+ self.original_image, [clicks_list]
40
+ )
41
+
42
+ pred_logits = self._get_prediction(image_nd, clicks_lists, is_image_changed)
43
+ prediction = F.interpolate(pred_logits, mode='bilinear', align_corners=True,
44
+ size=image_nd.size()[2:])
45
+
46
+ for t in reversed(self.transforms):
47
+ prediction = t.inv_transform(prediction)
48
+
49
+ if self.zoom_in is not None and self.zoom_in.check_possible_recalculation():
50
+ print('zooming')
51
+ return self.get_prediction(clicker)
52
+
53
+ # return prediction.cpu().numpy()[0, 0]
54
+ return prediction
55
+
56
+ def _get_prediction(self, image_nd, clicks_lists, is_image_changed):
57
+ points_nd = self.get_points_nd(clicks_lists)
58
+ return self.net(image_nd, points_nd)['instances']
59
+
60
+ def _get_transform_states(self):
61
+ return [x.get_state() for x in self.transforms]
62
+
63
+ def _set_transform_states(self, states):
64
+ assert len(states) == len(self.transforms)
65
+ for state, transform in zip(states, self.transforms):
66
+ transform.set_state(state)
67
+
68
+ def apply_transforms(self, image_nd, clicks_lists):
69
+ is_image_changed = False
70
+ for t in self.transforms:
71
+ image_nd, clicks_lists = t.transform(image_nd, clicks_lists)
72
+ is_image_changed |= t.image_changed
73
+
74
+ return image_nd, clicks_lists, is_image_changed
75
+
76
+ def get_points_nd(self, clicks_lists):
77
+ total_clicks = []
78
+ num_pos_clicks = [sum(x.is_positive for x in clicks_list) for clicks_list in clicks_lists]
79
+ num_neg_clicks = [len(clicks_list) - num_pos for clicks_list, num_pos in zip(clicks_lists, num_pos_clicks)]
80
+ num_max_points = max(num_pos_clicks + num_neg_clicks)
81
+ if self.net_clicks_limit is not None:
82
+ num_max_points = min(self.net_clicks_limit, num_max_points)
83
+ num_max_points = max(1, num_max_points)
84
+
85
+ for clicks_list in clicks_lists:
86
+ clicks_list = clicks_list[:self.net_clicks_limit]
87
+ pos_clicks = [click.coords for click in clicks_list if click.is_positive]
88
+ pos_clicks = pos_clicks + (num_max_points - len(pos_clicks)) * [(-1, -1)]
89
+
90
+ neg_clicks = [click.coords for click in clicks_list if not click.is_positive]
91
+ neg_clicks = neg_clicks + (num_max_points - len(neg_clicks)) * [(-1, -1)]
92
+ total_clicks.append(pos_clicks + neg_clicks)
93
+
94
+ return torch.tensor(total_clicks, device=self.device)
95
+
96
+ def get_states(self):
97
+ return {'transform_states': self._get_transform_states()}
98
+
99
+ def set_states(self, states):
100
+ self._set_transform_states(states['transform_states'])
inference/interact/fbrs/inference/predictors/brs.py ADDED
@@ -0,0 +1,280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import numpy as np
4
+ from scipy.optimize import fmin_l_bfgs_b
5
+
6
+ from .base import BasePredictor
7
+ from ...model.is_hrnet_model import DistMapsHRNetModel
8
+
9
+
10
+ class BRSBasePredictor(BasePredictor):
11
+ def __init__(self, model, device, opt_functor, optimize_after_n_clicks=1, **kwargs):
12
+ super().__init__(model, device, **kwargs)
13
+ self.optimize_after_n_clicks = optimize_after_n_clicks
14
+ self.opt_functor = opt_functor
15
+
16
+ self.opt_data = None
17
+ self.input_data = None
18
+
19
+ def set_input_image(self, image_nd):
20
+ super().set_input_image(image_nd)
21
+ self.opt_data = None
22
+ self.input_data = None
23
+
24
+ def _get_clicks_maps_nd(self, clicks_lists, image_shape, radius=1):
25
+ pos_clicks_map = np.zeros((len(clicks_lists), 1) + image_shape, dtype=np.float32)
26
+ neg_clicks_map = np.zeros((len(clicks_lists), 1) + image_shape, dtype=np.float32)
27
+
28
+ for list_indx, clicks_list in enumerate(clicks_lists):
29
+ for click in clicks_list:
30
+ y, x = click.coords
31
+ y, x = int(round(y)), int(round(x))
32
+ y1, x1 = y - radius, x - radius
33
+ y2, x2 = y + radius + 1, x + radius + 1
34
+
35
+ if click.is_positive:
36
+ pos_clicks_map[list_indx, 0, y1:y2, x1:x2] = True
37
+ else:
38
+ neg_clicks_map[list_indx, 0, y1:y2, x1:x2] = True
39
+
40
+ with torch.no_grad():
41
+ pos_clicks_map = torch.from_numpy(pos_clicks_map).to(self.device)
42
+ neg_clicks_map = torch.from_numpy(neg_clicks_map).to(self.device)
43
+
44
+ return pos_clicks_map, neg_clicks_map
45
+
46
+ def get_states(self):
47
+ return {'transform_states': self._get_transform_states(), 'opt_data': self.opt_data}
48
+
49
+ def set_states(self, states):
50
+ self._set_transform_states(states['transform_states'])
51
+ self.opt_data = states['opt_data']
52
+
53
+
54
+ class FeatureBRSPredictor(BRSBasePredictor):
55
+ def __init__(self, model, device, opt_functor, insertion_mode='after_deeplab', **kwargs):
56
+ super().__init__(model, device, opt_functor=opt_functor, **kwargs)
57
+ self.insertion_mode = insertion_mode
58
+ self._c1_features = None
59
+
60
+ if self.insertion_mode == 'after_deeplab':
61
+ self.num_channels = model.feature_extractor.ch
62
+ elif self.insertion_mode == 'after_c4':
63
+ self.num_channels = model.feature_extractor.aspp_in_channels
64
+ elif self.insertion_mode == 'after_aspp':
65
+ self.num_channels = model.feature_extractor.ch + 32
66
+ else:
67
+ raise NotImplementedError
68
+
69
+ def _get_prediction(self, image_nd, clicks_lists, is_image_changed):
70
+ points_nd = self.get_points_nd(clicks_lists)
71
+ pos_mask, neg_mask = self._get_clicks_maps_nd(clicks_lists, image_nd.shape[2:])
72
+
73
+ num_clicks = len(clicks_lists[0])
74
+ bs = image_nd.shape[0] // 2 if self.with_flip else image_nd.shape[0]
75
+
76
+ if self.opt_data is None or self.opt_data.shape[0] // (2 * self.num_channels) != bs:
77
+ self.opt_data = np.zeros((bs * 2 * self.num_channels), dtype=np.float32)
78
+
79
+ if num_clicks <= self.net_clicks_limit or is_image_changed or self.input_data is None:
80
+ self.input_data = self._get_head_input(image_nd, points_nd)
81
+
82
+ def get_prediction_logits(scale, bias):
83
+ scale = scale.view(bs, -1, 1, 1)
84
+ bias = bias.view(bs, -1, 1, 1)
85
+ if self.with_flip:
86
+ scale = scale.repeat(2, 1, 1, 1)
87
+ bias = bias.repeat(2, 1, 1, 1)
88
+
89
+ scaled_backbone_features = self.input_data * scale
90
+ scaled_backbone_features = scaled_backbone_features + bias
91
+ if self.insertion_mode == 'after_c4':
92
+ x = self.net.feature_extractor.aspp(scaled_backbone_features)
93
+ x = F.interpolate(x, mode='bilinear', size=self._c1_features.size()[2:],
94
+ align_corners=True)
95
+ x = torch.cat((x, self._c1_features), dim=1)
96
+ scaled_backbone_features = self.net.feature_extractor.head(x)
97
+ elif self.insertion_mode == 'after_aspp':
98
+ scaled_backbone_features = self.net.feature_extractor.head(scaled_backbone_features)
99
+
100
+ pred_logits = self.net.head(scaled_backbone_features)
101
+ pred_logits = F.interpolate(pred_logits, size=image_nd.size()[2:], mode='bilinear',
102
+ align_corners=True)
103
+ return pred_logits
104
+
105
+ self.opt_functor.init_click(get_prediction_logits, pos_mask, neg_mask, self.device)
106
+ if num_clicks > self.optimize_after_n_clicks:
107
+ opt_result = fmin_l_bfgs_b(func=self.opt_functor, x0=self.opt_data,
108
+ **self.opt_functor.optimizer_params)
109
+ self.opt_data = opt_result[0]
110
+
111
+ with torch.no_grad():
112
+ if self.opt_functor.best_prediction is not None:
113
+ opt_pred_logits = self.opt_functor.best_prediction
114
+ else:
115
+ opt_data_nd = torch.from_numpy(self.opt_data).to(self.device)
116
+ opt_vars, _ = self.opt_functor.unpack_opt_params(opt_data_nd)
117
+ opt_pred_logits = get_prediction_logits(*opt_vars)
118
+
119
+ return opt_pred_logits
120
+
121
+ def _get_head_input(self, image_nd, points):
122
+ with torch.no_grad():
123
+ coord_features = self.net.dist_maps(image_nd, points)
124
+ x = self.net.rgb_conv(torch.cat((image_nd, coord_features), dim=1))
125
+ if self.insertion_mode == 'after_c4' or self.insertion_mode == 'after_aspp':
126
+ c1, _, c3, c4 = self.net.feature_extractor.backbone(x)
127
+ c1 = self.net.feature_extractor.skip_project(c1)
128
+
129
+ if self.insertion_mode == 'after_aspp':
130
+ x = self.net.feature_extractor.aspp(c4)
131
+ x = F.interpolate(x, size=c1.size()[2:], mode='bilinear', align_corners=True)
132
+ x = torch.cat((x, c1), dim=1)
133
+ backbone_features = x
134
+ else:
135
+ backbone_features = c4
136
+ self._c1_features = c1
137
+ else:
138
+ backbone_features = self.net.feature_extractor(x)[0]
139
+
140
+ return backbone_features
141
+
142
+
143
+ class HRNetFeatureBRSPredictor(BRSBasePredictor):
144
+ def __init__(self, model, device, opt_functor, insertion_mode='A', **kwargs):
145
+ super().__init__(model, device, opt_functor=opt_functor, **kwargs)
146
+ self.insertion_mode = insertion_mode
147
+ self._c1_features = None
148
+
149
+ if self.insertion_mode == 'A':
150
+ self.num_channels = sum(k * model.feature_extractor.width for k in [1, 2, 4, 8])
151
+ elif self.insertion_mode == 'C':
152
+ self.num_channels = 2 * model.feature_extractor.ocr_width
153
+ else:
154
+ raise NotImplementedError
155
+
156
+ def _get_prediction(self, image_nd, clicks_lists, is_image_changed):
157
+ points_nd = self.get_points_nd(clicks_lists)
158
+ pos_mask, neg_mask = self._get_clicks_maps_nd(clicks_lists, image_nd.shape[2:])
159
+ num_clicks = len(clicks_lists[0])
160
+ bs = image_nd.shape[0] // 2 if self.with_flip else image_nd.shape[0]
161
+
162
+ if self.opt_data is None or self.opt_data.shape[0] // (2 * self.num_channels) != bs:
163
+ self.opt_data = np.zeros((bs * 2 * self.num_channels), dtype=np.float32)
164
+
165
+ if num_clicks <= self.net_clicks_limit or is_image_changed or self.input_data is None:
166
+ self.input_data = self._get_head_input(image_nd, points_nd)
167
+
168
+ def get_prediction_logits(scale, bias):
169
+ scale = scale.view(bs, -1, 1, 1)
170
+ bias = bias.view(bs, -1, 1, 1)
171
+ if self.with_flip:
172
+ scale = scale.repeat(2, 1, 1, 1)
173
+ bias = bias.repeat(2, 1, 1, 1)
174
+
175
+ scaled_backbone_features = self.input_data * scale
176
+ scaled_backbone_features = scaled_backbone_features + bias
177
+ if self.insertion_mode == 'A':
178
+ out_aux = self.net.feature_extractor.aux_head(scaled_backbone_features)
179
+ feats = self.net.feature_extractor.conv3x3_ocr(scaled_backbone_features)
180
+
181
+ context = self.net.feature_extractor.ocr_gather_head(feats, out_aux)
182
+ feats = self.net.feature_extractor.ocr_distri_head(feats, context)
183
+ pred_logits = self.net.feature_extractor.cls_head(feats)
184
+ elif self.insertion_mode == 'C':
185
+ pred_logits = self.net.feature_extractor.cls_head(scaled_backbone_features)
186
+ else:
187
+ raise NotImplementedError
188
+
189
+ pred_logits = F.interpolate(pred_logits, size=image_nd.size()[2:], mode='bilinear',
190
+ align_corners=True)
191
+ return pred_logits
192
+
193
+ self.opt_functor.init_click(get_prediction_logits, pos_mask, neg_mask, self.device)
194
+ if num_clicks > self.optimize_after_n_clicks:
195
+ opt_result = fmin_l_bfgs_b(func=self.opt_functor, x0=self.opt_data,
196
+ **self.opt_functor.optimizer_params)
197
+ self.opt_data = opt_result[0]
198
+
199
+ with torch.no_grad():
200
+ if self.opt_functor.best_prediction is not None:
201
+ opt_pred_logits = self.opt_functor.best_prediction
202
+ else:
203
+ opt_data_nd = torch.from_numpy(self.opt_data).to(self.device)
204
+ opt_vars, _ = self.opt_functor.unpack_opt_params(opt_data_nd)
205
+ opt_pred_logits = get_prediction_logits(*opt_vars)
206
+
207
+ return opt_pred_logits
208
+
209
+ def _get_head_input(self, image_nd, points):
210
+ with torch.no_grad():
211
+ coord_features = self.net.dist_maps(image_nd, points)
212
+ x = self.net.rgb_conv(torch.cat((image_nd, coord_features), dim=1))
213
+ feats = self.net.feature_extractor.compute_hrnet_feats(x)
214
+ if self.insertion_mode == 'A':
215
+ backbone_features = feats
216
+ elif self.insertion_mode == 'C':
217
+ out_aux = self.net.feature_extractor.aux_head(feats)
218
+ feats = self.net.feature_extractor.conv3x3_ocr(feats)
219
+
220
+ context = self.net.feature_extractor.ocr_gather_head(feats, out_aux)
221
+ backbone_features = self.net.feature_extractor.ocr_distri_head(feats, context)
222
+ else:
223
+ raise NotImplementedError
224
+
225
+ return backbone_features
226
+
227
+
228
+ class InputBRSPredictor(BRSBasePredictor):
229
+ def __init__(self, model, device, opt_functor, optimize_target='rgb', **kwargs):
230
+ super().__init__(model, device, opt_functor=opt_functor, **kwargs)
231
+ self.optimize_target = optimize_target
232
+
233
+ def _get_prediction(self, image_nd, clicks_lists, is_image_changed):
234
+ points_nd = self.get_points_nd(clicks_lists)
235
+ pos_mask, neg_mask = self._get_clicks_maps_nd(clicks_lists, image_nd.shape[2:])
236
+ num_clicks = len(clicks_lists[0])
237
+
238
+ if self.opt_data is None or is_image_changed:
239
+ opt_channels = 2 if self.optimize_target == 'dmaps' else 3
240
+ bs = image_nd.shape[0] // 2 if self.with_flip else image_nd.shape[0]
241
+ self.opt_data = torch.zeros((bs, opt_channels, image_nd.shape[2], image_nd.shape[3]),
242
+ device=self.device, dtype=torch.float32)
243
+
244
+ def get_prediction_logits(opt_bias):
245
+ input_image = image_nd
246
+ if self.optimize_target == 'rgb':
247
+ input_image = input_image + opt_bias
248
+ dmaps = self.net.dist_maps(input_image, points_nd)
249
+ if self.optimize_target == 'dmaps':
250
+ dmaps = dmaps + opt_bias
251
+
252
+ x = self.net.rgb_conv(torch.cat((input_image, dmaps), dim=1))
253
+ if self.optimize_target == 'all':
254
+ x = x + opt_bias
255
+
256
+ if isinstance(self.net, DistMapsHRNetModel):
257
+ pred_logits = self.net.feature_extractor(x)[0]
258
+ else:
259
+ backbone_features = self.net.feature_extractor(x)
260
+ pred_logits = self.net.head(backbone_features[0])
261
+ pred_logits = F.interpolate(pred_logits, size=image_nd.size()[2:], mode='bilinear', align_corners=True)
262
+
263
+ return pred_logits
264
+
265
+ self.opt_functor.init_click(get_prediction_logits, pos_mask, neg_mask, self.device,
266
+ shape=self.opt_data.shape)
267
+ if num_clicks > self.optimize_after_n_clicks:
268
+ opt_result = fmin_l_bfgs_b(func=self.opt_functor, x0=self.opt_data.cpu().numpy().ravel(),
269
+ **self.opt_functor.optimizer_params)
270
+
271
+ self.opt_data = torch.from_numpy(opt_result[0]).view(self.opt_data.shape).to(self.device)
272
+
273
+ with torch.no_grad():
274
+ if self.opt_functor.best_prediction is not None:
275
+ opt_pred_logits = self.opt_functor.best_prediction
276
+ else:
277
+ opt_vars, _ = self.opt_functor.unpack_opt_params(self.opt_data)
278
+ opt_pred_logits = get_prediction_logits(*opt_vars)
279
+
280
+ return opt_pred_logits
inference/interact/fbrs/inference/predictors/brs_functors.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+
4
+ from ...model.metrics import _compute_iou
5
+ from .brs_losses import BRSMaskLoss
6
+
7
+
8
+ class BaseOptimizer:
9
+ def __init__(self, optimizer_params,
10
+ prob_thresh=0.49,
11
+ reg_weight=1e-3,
12
+ min_iou_diff=0.01,
13
+ brs_loss=BRSMaskLoss(),
14
+ with_flip=False,
15
+ flip_average=False,
16
+ **kwargs):
17
+ self.brs_loss = brs_loss
18
+ self.optimizer_params = optimizer_params
19
+ self.prob_thresh = prob_thresh
20
+ self.reg_weight = reg_weight
21
+ self.min_iou_diff = min_iou_diff
22
+ self.with_flip = with_flip
23
+ self.flip_average = flip_average
24
+
25
+ self.best_prediction = None
26
+ self._get_prediction_logits = None
27
+ self._opt_shape = None
28
+ self._best_loss = None
29
+ self._click_masks = None
30
+ self._last_mask = None
31
+ self.device = None
32
+
33
+ def init_click(self, get_prediction_logits, pos_mask, neg_mask, device, shape=None):
34
+ self.best_prediction = None
35
+ self._get_prediction_logits = get_prediction_logits
36
+ self._click_masks = (pos_mask, neg_mask)
37
+ self._opt_shape = shape
38
+ self._last_mask = None
39
+ self.device = device
40
+
41
+ def __call__(self, x):
42
+ opt_params = torch.from_numpy(x).float().to(self.device)
43
+ opt_params.requires_grad_(True)
44
+
45
+ with torch.enable_grad():
46
+ opt_vars, reg_loss = self.unpack_opt_params(opt_params)
47
+ result_before_sigmoid = self._get_prediction_logits(*opt_vars)
48
+ result = torch.sigmoid(result_before_sigmoid)
49
+
50
+ pos_mask, neg_mask = self._click_masks
51
+ if self.with_flip and self.flip_average:
52
+ result, result_flipped = torch.chunk(result, 2, dim=0)
53
+ result = 0.5 * (result + torch.flip(result_flipped, dims=[3]))
54
+ pos_mask, neg_mask = pos_mask[:result.shape[0]], neg_mask[:result.shape[0]]
55
+
56
+ loss, f_max_pos, f_max_neg = self.brs_loss(result, pos_mask, neg_mask)
57
+ loss = loss + reg_loss
58
+
59
+ f_val = loss.detach().cpu().numpy()
60
+ if self.best_prediction is None or f_val < self._best_loss:
61
+ self.best_prediction = result_before_sigmoid.detach()
62
+ self._best_loss = f_val
63
+
64
+ if f_max_pos < (1 - self.prob_thresh) and f_max_neg < self.prob_thresh:
65
+ return [f_val, np.zeros_like(x)]
66
+
67
+ current_mask = result > self.prob_thresh
68
+ if self._last_mask is not None and self.min_iou_diff > 0:
69
+ diff_iou = _compute_iou(current_mask, self._last_mask)
70
+ if len(diff_iou) > 0 and diff_iou.mean() > 1 - self.min_iou_diff:
71
+ return [f_val, np.zeros_like(x)]
72
+ self._last_mask = current_mask
73
+
74
+ loss.backward()
75
+ f_grad = opt_params.grad.cpu().numpy().ravel().astype(np.float)
76
+
77
+ return [f_val, f_grad]
78
+
79
+ def unpack_opt_params(self, opt_params):
80
+ raise NotImplementedError
81
+
82
+
83
+ class InputOptimizer(BaseOptimizer):
84
+ def unpack_opt_params(self, opt_params):
85
+ opt_params = opt_params.view(self._opt_shape)
86
+ if self.with_flip:
87
+ opt_params_flipped = torch.flip(opt_params, dims=[3])
88
+ opt_params = torch.cat([opt_params, opt_params_flipped], dim=0)
89
+ reg_loss = self.reg_weight * torch.sum(opt_params**2)
90
+
91
+ return (opt_params,), reg_loss
92
+
93
+
94
+ class ScaleBiasOptimizer(BaseOptimizer):
95
+ def __init__(self, *args, scale_act=None, reg_bias_weight=10.0, **kwargs):
96
+ super().__init__(*args, **kwargs)
97
+ self.scale_act = scale_act
98
+ self.reg_bias_weight = reg_bias_weight
99
+
100
+ def unpack_opt_params(self, opt_params):
101
+ scale, bias = torch.chunk(opt_params, 2, dim=0)
102
+ reg_loss = self.reg_weight * (torch.sum(scale**2) + self.reg_bias_weight * torch.sum(bias**2))
103
+
104
+ if self.scale_act == 'tanh':
105
+ scale = torch.tanh(scale)
106
+ elif self.scale_act == 'sin':
107
+ scale = torch.sin(scale)
108
+
109
+ return (1 + scale, bias), reg_loss
inference/interact/fbrs/inference/predictors/brs_losses.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from ...model.losses import SigmoidBinaryCrossEntropyLoss
4
+
5
+
6
+ class BRSMaskLoss(torch.nn.Module):
7
+ def __init__(self, eps=1e-5):
8
+ super().__init__()
9
+ self._eps = eps
10
+
11
+ def forward(self, result, pos_mask, neg_mask):
12
+ pos_diff = (1 - result) * pos_mask
13
+ pos_target = torch.sum(pos_diff ** 2)
14
+ pos_target = pos_target / (torch.sum(pos_mask) + self._eps)
15
+
16
+ neg_diff = result * neg_mask
17
+ neg_target = torch.sum(neg_diff ** 2)
18
+ neg_target = neg_target / (torch.sum(neg_mask) + self._eps)
19
+
20
+ loss = pos_target + neg_target
21
+
22
+ with torch.no_grad():
23
+ f_max_pos = torch.max(torch.abs(pos_diff)).item()
24
+ f_max_neg = torch.max(torch.abs(neg_diff)).item()
25
+
26
+ return loss, f_max_pos, f_max_neg
27
+
28
+
29
+ class OracleMaskLoss(torch.nn.Module):
30
+ def __init__(self):
31
+ super().__init__()
32
+ self.gt_mask = None
33
+ self.loss = SigmoidBinaryCrossEntropyLoss(from_sigmoid=True)
34
+ self.predictor = None
35
+ self.history = []
36
+
37
+ def set_gt_mask(self, gt_mask):
38
+ self.gt_mask = gt_mask
39
+ self.history = []
40
+
41
+ def forward(self, result, pos_mask, neg_mask):
42
+ gt_mask = self.gt_mask.to(result.device)
43
+ if self.predictor.object_roi is not None:
44
+ r1, r2, c1, c2 = self.predictor.object_roi[:4]
45
+ gt_mask = gt_mask[:, :, r1:r2 + 1, c1:c2 + 1]
46
+ gt_mask = torch.nn.functional.interpolate(gt_mask, result.size()[2:], mode='bilinear', align_corners=True)
47
+
48
+ if result.shape[0] == 2:
49
+ gt_mask_flipped = torch.flip(gt_mask, dims=[3])
50
+ gt_mask = torch.cat([gt_mask, gt_mask_flipped], dim=0)
51
+
52
+ loss = self.loss(result, gt_mask)
53
+ self.history.append(loss.detach().cpu().numpy()[0])
54
+
55
+ if len(self.history) > 5 and abs(self.history[-5] - self.history[-1]) < 1e-5:
56
+ return 0, 0, 0
57
+
58
+ return loss, 1.0, 1.0
inference/interact/fbrs/inference/transforms/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ from .base import SigmoidForPred
2
+ from .flip import AddHorizontalFlip
3
+ from .zoom_in import ZoomIn
4
+ from .limit_longest_side import LimitLongestSide
5
+ from .crops import Crops
inference/interact/fbrs/inference/transforms/base.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ class BaseTransform(object):
5
+ def __init__(self):
6
+ self.image_changed = False
7
+
8
+ def transform(self, image_nd, clicks_lists):
9
+ raise NotImplementedError
10
+
11
+ def inv_transform(self, prob_map):
12
+ raise NotImplementedError
13
+
14
+ def reset(self):
15
+ raise NotImplementedError
16
+
17
+ def get_state(self):
18
+ raise NotImplementedError
19
+
20
+ def set_state(self, state):
21
+ raise NotImplementedError
22
+
23
+
24
+ class SigmoidForPred(BaseTransform):
25
+ def transform(self, image_nd, clicks_lists):
26
+ return image_nd, clicks_lists
27
+
28
+ def inv_transform(self, prob_map):
29
+ return torch.sigmoid(prob_map)
30
+
31
+ def reset(self):
32
+ pass
33
+
34
+ def get_state(self):
35
+ return None
36
+
37
+ def set_state(self, state):
38
+ pass
inference/interact/fbrs/inference/transforms/crops.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import torch
4
+ import numpy as np
5
+
6
+ from ...inference.clicker import Click
7
+ from .base import BaseTransform
8
+
9
+
10
+ class Crops(BaseTransform):
11
+ def __init__(self, crop_size=(320, 480), min_overlap=0.2):
12
+ super().__init__()
13
+ self.crop_height, self.crop_width = crop_size
14
+ self.min_overlap = min_overlap
15
+
16
+ self.x_offsets = None
17
+ self.y_offsets = None
18
+ self._counts = None
19
+
20
+ def transform(self, image_nd, clicks_lists):
21
+ assert image_nd.shape[0] == 1 and len(clicks_lists) == 1
22
+ image_height, image_width = image_nd.shape[2:4]
23
+ self._counts = None
24
+
25
+ if image_height < self.crop_height or image_width < self.crop_width:
26
+ return image_nd, clicks_lists
27
+
28
+ self.x_offsets = get_offsets(image_width, self.crop_width, self.min_overlap)
29
+ self.y_offsets = get_offsets(image_height, self.crop_height, self.min_overlap)
30
+ self._counts = np.zeros((image_height, image_width))
31
+
32
+ image_crops = []
33
+ for dy in self.y_offsets:
34
+ for dx in self.x_offsets:
35
+ self._counts[dy:dy + self.crop_height, dx:dx + self.crop_width] += 1
36
+ image_crop = image_nd[:, :, dy:dy + self.crop_height, dx:dx + self.crop_width]
37
+ image_crops.append(image_crop)
38
+ image_crops = torch.cat(image_crops, dim=0)
39
+ self._counts = torch.tensor(self._counts, device=image_nd.device, dtype=torch.float32)
40
+
41
+ clicks_list = clicks_lists[0]
42
+ clicks_lists = []
43
+ for dy in self.y_offsets:
44
+ for dx in self.x_offsets:
45
+ crop_clicks = [Click(is_positive=x.is_positive, coords=(x.coords[0] - dy, x.coords[1] - dx))
46
+ for x in clicks_list]
47
+ clicks_lists.append(crop_clicks)
48
+
49
+ return image_crops, clicks_lists
50
+
51
+ def inv_transform(self, prob_map):
52
+ if self._counts is None:
53
+ return prob_map
54
+
55
+ new_prob_map = torch.zeros((1, 1, *self._counts.shape),
56
+ dtype=prob_map.dtype, device=prob_map.device)
57
+
58
+ crop_indx = 0
59
+ for dy in self.y_offsets:
60
+ for dx in self.x_offsets:
61
+ new_prob_map[0, 0, dy:dy + self.crop_height, dx:dx + self.crop_width] += prob_map[crop_indx, 0]
62
+ crop_indx += 1
63
+ new_prob_map = torch.div(new_prob_map, self._counts)
64
+
65
+ return new_prob_map
66
+
67
+ def get_state(self):
68
+ return self.x_offsets, self.y_offsets, self._counts
69
+
70
+ def set_state(self, state):
71
+ self.x_offsets, self.y_offsets, self._counts = state
72
+
73
+ def reset(self):
74
+ self.x_offsets = None
75
+ self.y_offsets = None
76
+ self._counts = None
77
+
78
+
79
+ def get_offsets(length, crop_size, min_overlap_ratio=0.2):
80
+ if length == crop_size:
81
+ return [0]
82
+
83
+ N = (length / crop_size - min_overlap_ratio) / (1 - min_overlap_ratio)
84
+ N = math.ceil(N)
85
+
86
+ overlap_ratio = (N - length / crop_size) / (N - 1)
87
+ overlap_width = int(crop_size * overlap_ratio)
88
+
89
+ offsets = [0]
90
+ for i in range(1, N):
91
+ new_offset = offsets[-1] + crop_size - overlap_width
92
+ if new_offset + crop_size > length:
93
+ new_offset = length - crop_size
94
+
95
+ offsets.append(new_offset)
96
+
97
+ return offsets
inference/interact/fbrs/inference/transforms/flip.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from ..clicker import Click
4
+ from .base import BaseTransform
5
+
6
+
7
+ class AddHorizontalFlip(BaseTransform):
8
+ def transform(self, image_nd, clicks_lists):
9
+ assert len(image_nd.shape) == 4
10
+ image_nd = torch.cat([image_nd, torch.flip(image_nd, dims=[3])], dim=0)
11
+
12
+ image_width = image_nd.shape[3]
13
+ clicks_lists_flipped = []
14
+ for clicks_list in clicks_lists:
15
+ clicks_list_flipped = [Click(is_positive=click.is_positive,
16
+ coords=(click.coords[0], image_width - click.coords[1] - 1))
17
+ for click in clicks_list]
18
+ clicks_lists_flipped.append(clicks_list_flipped)
19
+ clicks_lists = clicks_lists + clicks_lists_flipped
20
+
21
+ return image_nd, clicks_lists
22
+
23
+ def inv_transform(self, prob_map):
24
+ assert len(prob_map.shape) == 4 and prob_map.shape[0] % 2 == 0
25
+ num_maps = prob_map.shape[0] // 2
26
+ prob_map, prob_map_flipped = prob_map[:num_maps], prob_map[num_maps:]
27
+
28
+ return 0.5 * (prob_map + torch.flip(prob_map_flipped, dims=[3]))
29
+
30
+ def get_state(self):
31
+ return None
32
+
33
+ def set_state(self, state):
34
+ pass
35
+
36
+ def reset(self):
37
+ pass
inference/interact/fbrs/inference/transforms/limit_longest_side.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .zoom_in import ZoomIn, get_roi_image_nd
2
+
3
+
4
+ class LimitLongestSide(ZoomIn):
5
+ def __init__(self, max_size=800):
6
+ super().__init__(target_size=max_size, skip_clicks=0)
7
+
8
+ def transform(self, image_nd, clicks_lists):
9
+ assert image_nd.shape[0] == 1 and len(clicks_lists) == 1
10
+ image_max_size = max(image_nd.shape[2:4])
11
+ self.image_changed = False
12
+
13
+ if image_max_size <= self.target_size:
14
+ return image_nd, clicks_lists
15
+ self._input_image = image_nd
16
+
17
+ self._object_roi = (0, image_nd.shape[2] - 1, 0, image_nd.shape[3] - 1)
18
+ self._roi_image = get_roi_image_nd(image_nd, self._object_roi, self.target_size)
19
+ self.image_changed = True
20
+
21
+ tclicks_lists = [self._transform_clicks(clicks_lists[0])]
22
+ return self._roi_image, tclicks_lists
inference/interact/fbrs/inference/transforms/zoom_in.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from ..clicker import Click
4
+ from ...utils.misc import get_bbox_iou, get_bbox_from_mask, expand_bbox, clamp_bbox
5
+ from .base import BaseTransform
6
+
7
+
8
+ class ZoomIn(BaseTransform):
9
+ def __init__(self,
10
+ target_size=400,
11
+ skip_clicks=1,
12
+ expansion_ratio=1.4,
13
+ min_crop_size=200,
14
+ recompute_thresh_iou=0.5,
15
+ prob_thresh=0.50):
16
+ super().__init__()
17
+ self.target_size = target_size
18
+ self.min_crop_size = min_crop_size
19
+ self.skip_clicks = skip_clicks
20
+ self.expansion_ratio = expansion_ratio
21
+ self.recompute_thresh_iou = recompute_thresh_iou
22
+ self.prob_thresh = prob_thresh
23
+
24
+ self._input_image_shape = None
25
+ self._prev_probs = None
26
+ self._object_roi = None
27
+ self._roi_image = None
28
+
29
+ def transform(self, image_nd, clicks_lists):
30
+ assert image_nd.shape[0] == 1 and len(clicks_lists) == 1
31
+ self.image_changed = False
32
+
33
+ clicks_list = clicks_lists[0]
34
+ if len(clicks_list) <= self.skip_clicks:
35
+ return image_nd, clicks_lists
36
+
37
+ self._input_image_shape = image_nd.shape
38
+
39
+ current_object_roi = None
40
+ if self._prev_probs is not None:
41
+ current_pred_mask = (self._prev_probs > self.prob_thresh)[0, 0]
42
+ if current_pred_mask.sum() > 0:
43
+ current_object_roi = get_object_roi(current_pred_mask, clicks_list,
44
+ self.expansion_ratio, self.min_crop_size)
45
+
46
+ if current_object_roi is None:
47
+ return image_nd, clicks_lists
48
+
49
+ update_object_roi = False
50
+ if self._object_roi is None:
51
+ update_object_roi = True
52
+ elif not check_object_roi(self._object_roi, clicks_list):
53
+ update_object_roi = True
54
+ elif get_bbox_iou(current_object_roi, self._object_roi) < self.recompute_thresh_iou:
55
+ update_object_roi = True
56
+
57
+ if update_object_roi:
58
+ self._object_roi = current_object_roi
59
+ self._roi_image = get_roi_image_nd(image_nd, self._object_roi, self.target_size)
60
+ self.image_changed = True
61
+
62
+ tclicks_lists = [self._transform_clicks(clicks_list)]
63
+ return self._roi_image.to(image_nd.device), tclicks_lists
64
+
65
+ def inv_transform(self, prob_map):
66
+ if self._object_roi is None:
67
+ self._prev_probs = prob_map.cpu().numpy()
68
+ return prob_map
69
+
70
+ assert prob_map.shape[0] == 1
71
+ rmin, rmax, cmin, cmax = self._object_roi
72
+ prob_map = torch.nn.functional.interpolate(prob_map, size=(rmax - rmin + 1, cmax - cmin + 1),
73
+ mode='bilinear', align_corners=True)
74
+
75
+ if self._prev_probs is not None:
76
+ new_prob_map = torch.zeros(*self._prev_probs.shape, device=prob_map.device, dtype=prob_map.dtype)
77
+ new_prob_map[:, :, rmin:rmax + 1, cmin:cmax + 1] = prob_map
78
+ else:
79
+ new_prob_map = prob_map
80
+
81
+ self._prev_probs = new_prob_map.cpu().numpy()
82
+
83
+ return new_prob_map
84
+
85
+ def check_possible_recalculation(self):
86
+ if self._prev_probs is None or self._object_roi is not None or self.skip_clicks > 0:
87
+ return False
88
+
89
+ pred_mask = (self._prev_probs > self.prob_thresh)[0, 0]
90
+ if pred_mask.sum() > 0:
91
+ possible_object_roi = get_object_roi(pred_mask, [],
92
+ self.expansion_ratio, self.min_crop_size)
93
+ image_roi = (0, self._input_image_shape[2] - 1, 0, self._input_image_shape[3] - 1)
94
+ if get_bbox_iou(possible_object_roi, image_roi) < 0.50:
95
+ return True
96
+ return False
97
+
98
+ def get_state(self):
99
+ roi_image = self._roi_image.cpu() if self._roi_image is not None else None
100
+ return self._input_image_shape, self._object_roi, self._prev_probs, roi_image, self.image_changed
101
+
102
+ def set_state(self, state):
103
+ self._input_image_shape, self._object_roi, self._prev_probs, self._roi_image, self.image_changed = state
104
+
105
+ def reset(self):
106
+ self._input_image_shape = None
107
+ self._object_roi = None
108
+ self._prev_probs = None
109
+ self._roi_image = None
110
+ self.image_changed = False
111
+
112
+ def _transform_clicks(self, clicks_list):
113
+ if self._object_roi is None:
114
+ return clicks_list
115
+
116
+ rmin, rmax, cmin, cmax = self._object_roi
117
+ crop_height, crop_width = self._roi_image.shape[2:]
118
+
119
+ transformed_clicks = []
120
+ for click in clicks_list:
121
+ new_r = crop_height * (click.coords[0] - rmin) / (rmax - rmin + 1)
122
+ new_c = crop_width * (click.coords[1] - cmin) / (cmax - cmin + 1)
123
+ transformed_clicks.append(Click(is_positive=click.is_positive, coords=(new_r, new_c)))
124
+ return transformed_clicks
125
+
126
+
127
+ def get_object_roi(pred_mask, clicks_list, expansion_ratio, min_crop_size):
128
+ pred_mask = pred_mask.copy()
129
+
130
+ for click in clicks_list:
131
+ if click.is_positive:
132
+ pred_mask[int(click.coords[0]), int(click.coords[1])] = 1
133
+
134
+ bbox = get_bbox_from_mask(pred_mask)
135
+ bbox = expand_bbox(bbox, expansion_ratio, min_crop_size)
136
+ h, w = pred_mask.shape[0], pred_mask.shape[1]
137
+ bbox = clamp_bbox(bbox, 0, h - 1, 0, w - 1)
138
+
139
+ return bbox
140
+
141
+
142
+ def get_roi_image_nd(image_nd, object_roi, target_size):
143
+ rmin, rmax, cmin, cmax = object_roi
144
+
145
+ height = rmax - rmin + 1
146
+ width = cmax - cmin + 1
147
+
148
+ if isinstance(target_size, tuple):
149
+ new_height, new_width = target_size
150
+ else:
151
+ scale = target_size / max(height, width)
152
+ new_height = int(round(height * scale))
153
+ new_width = int(round(width * scale))
154
+
155
+ with torch.no_grad():
156
+ roi_image_nd = image_nd[:, :, rmin:rmax + 1, cmin:cmax + 1]
157
+ roi_image_nd = torch.nn.functional.interpolate(roi_image_nd, size=(new_height, new_width),
158
+ mode='bilinear', align_corners=True)
159
+
160
+ return roi_image_nd
161
+
162
+
163
+ def check_object_roi(object_roi, clicks_list):
164
+ for click in clicks_list:
165
+ if click.is_positive:
166
+ if click.coords[0] < object_roi[0] or click.coords[0] >= object_roi[1]:
167
+ return False
168
+ if click.coords[1] < object_roi[2] or click.coords[1] >= object_roi[3]:
169
+ return False
170
+
171
+ return True
inference/interact/fbrs/inference/utils.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import timedelta
2
+ from pathlib import Path
3
+
4
+ import torch
5
+ import numpy as np
6
+
7
+ from ..model.is_deeplab_model import get_deeplab_model
8
+ from ..model.is_hrnet_model import get_hrnet_model
9
+
10
+
11
+ def get_time_metrics(all_ious, elapsed_time):
12
+ n_images = len(all_ious)
13
+ n_clicks = sum(map(len, all_ious))
14
+
15
+ mean_spc = elapsed_time / n_clicks
16
+ mean_spi = elapsed_time / n_images
17
+
18
+ return mean_spc, mean_spi
19
+
20
+
21
+ def load_is_model(checkpoint, device, backbone='auto', **kwargs):
22
+ if isinstance(checkpoint, (str, Path)):
23
+ state_dict = torch.load(checkpoint, map_location='cpu')
24
+ else:
25
+ state_dict = checkpoint
26
+
27
+ if backbone == 'auto':
28
+ for k in state_dict.keys():
29
+ if 'feature_extractor.stage2.0.branches' in k:
30
+ return load_hrnet_is_model(state_dict, device, backbone, **kwargs)
31
+ return load_deeplab_is_model(state_dict, device, backbone, **kwargs)
32
+ elif 'resnet' in backbone:
33
+ return load_deeplab_is_model(state_dict, device, backbone, **kwargs)
34
+ elif 'hrnet' in backbone:
35
+ return load_hrnet_is_model(state_dict, device, backbone, **kwargs)
36
+ else:
37
+ raise NotImplementedError('Unknown backbone')
38
+
39
+
40
+ def load_hrnet_is_model(state_dict, device, backbone='auto', width=48, ocr_width=256,
41
+ small=False, cpu_dist_maps=False, norm_radius=260):
42
+ if backbone == 'auto':
43
+ num_fe_weights = len([x for x in state_dict.keys() if 'feature_extractor.' in x])
44
+ small = num_fe_weights < 1800
45
+
46
+ ocr_f_down = [v for k, v in state_dict.items() if 'object_context_block.f_down.1.0.bias' in k]
47
+ assert len(ocr_f_down) == 1
48
+ ocr_width = ocr_f_down[0].shape[0]
49
+
50
+ s2_conv1_w = [v for k, v in state_dict.items() if 'stage2.0.branches.0.0.conv1.weight' in k]
51
+ assert len(s2_conv1_w) == 1
52
+ width = s2_conv1_w[0].shape[0]
53
+
54
+ model = get_hrnet_model(width=width, ocr_width=ocr_width, small=small,
55
+ with_aux_output=False, cpu_dist_maps=cpu_dist_maps,
56
+ norm_radius=norm_radius)
57
+
58
+ model.load_state_dict(state_dict, strict=False)
59
+ for param in model.parameters():
60
+ param.requires_grad = False
61
+ model.to(device)
62
+ model.eval()
63
+
64
+ return model
65
+
66
+
67
+ def load_deeplab_is_model(state_dict, device, backbone='auto', deeplab_ch=128, aspp_dropout=0.2,
68
+ cpu_dist_maps=False, norm_radius=260):
69
+ if backbone == 'auto':
70
+ num_backbone_params = len([x for x in state_dict.keys()
71
+ if 'feature_extractor.backbone' in x and not('num_batches_tracked' in x)])
72
+
73
+ if num_backbone_params <= 181:
74
+ backbone = 'resnet34'
75
+ elif num_backbone_params <= 276:
76
+ backbone = 'resnet50'
77
+ elif num_backbone_params <= 531:
78
+ backbone = 'resnet101'
79
+ else:
80
+ raise NotImplementedError('Unknown backbone')
81
+
82
+ if 'aspp_dropout' in state_dict:
83
+ aspp_dropout = float(state_dict['aspp_dropout'].cpu().numpy())
84
+ else:
85
+ aspp_project_weight = [v for k, v in state_dict.items() if 'aspp.project.0.weight' in k][0]
86
+ deeplab_ch = aspp_project_weight.size(0)
87
+ if deeplab_ch == 256:
88
+ aspp_dropout = 0.5
89
+
90
+ model = get_deeplab_model(backbone=backbone, deeplab_ch=deeplab_ch,
91
+ aspp_dropout=aspp_dropout, cpu_dist_maps=cpu_dist_maps,
92
+ norm_radius=norm_radius)
93
+
94
+ model.load_state_dict(state_dict, strict=False)
95
+ for param in model.parameters():
96
+ param.requires_grad = False
97
+ model.to(device)
98
+ model.eval()
99
+
100
+ return model
101
+
102
+
103
+ def get_iou(gt_mask, pred_mask, ignore_label=-1):
104
+ ignore_gt_mask_inv = gt_mask != ignore_label
105
+ obj_gt_mask = gt_mask == 1
106
+
107
+ intersection = np.logical_and(np.logical_and(pred_mask, obj_gt_mask), ignore_gt_mask_inv).sum()
108
+ union = np.logical_and(np.logical_or(pred_mask, obj_gt_mask), ignore_gt_mask_inv).sum()
109
+
110
+ return intersection / union
111
+
112
+
113
+ def compute_noc_metric(all_ious, iou_thrs, max_clicks=20):
114
+ def _get_noc(iou_arr, iou_thr):
115
+ vals = iou_arr >= iou_thr
116
+ return np.argmax(vals) + 1 if np.any(vals) else max_clicks
117
+
118
+ noc_list = []
119
+ over_max_list = []
120
+ for iou_thr in iou_thrs:
121
+ scores_arr = np.array([_get_noc(iou_arr, iou_thr)
122
+ for iou_arr in all_ious], dtype=np.int)
123
+
124
+ score = scores_arr.mean()
125
+ over_max = (scores_arr == max_clicks).sum()
126
+
127
+ noc_list.append(score)
128
+ over_max_list.append(over_max)
129
+
130
+ return noc_list, over_max_list
131
+
132
+
133
+ def find_checkpoint(weights_folder, checkpoint_name):
134
+ weights_folder = Path(weights_folder)
135
+ if ':' in checkpoint_name:
136
+ model_name, checkpoint_name = checkpoint_name.split(':')
137
+ models_candidates = [x for x in weights_folder.glob(f'{model_name}*') if x.is_dir()]
138
+ assert len(models_candidates) == 1
139
+ model_folder = models_candidates[0]
140
+ else:
141
+ model_folder = weights_folder
142
+
143
+ if checkpoint_name.endswith('.pth'):
144
+ if Path(checkpoint_name).exists():
145
+ checkpoint_path = checkpoint_name
146
+ else:
147
+ checkpoint_path = weights_folder / checkpoint_name
148
+ else:
149
+ model_checkpoints = list(model_folder.rglob(f'{checkpoint_name}*.pth'))
150
+ assert len(model_checkpoints) == 1
151
+ checkpoint_path = model_checkpoints[0]
152
+
153
+ return str(checkpoint_path)
154
+
155
+
156
+ def get_results_table(noc_list, over_max_list, brs_type, dataset_name, mean_spc, elapsed_time,
157
+ n_clicks=20, model_name=None):
158
+ table_header = (f'|{"BRS Type":^13}|{"Dataset":^11}|'
159
+ f'{"NoC@80%":^9}|{"NoC@85%":^9}|{"NoC@90%":^9}|'
160
+ f'{">="+str(n_clicks)+"@85%":^9}|{">="+str(n_clicks)+"@90%":^9}|'
161
+ f'{"SPC,s":^7}|{"Time":^9}|')
162
+ row_width = len(table_header)
163
+
164
+ header = f'Eval results for model: {model_name}\n' if model_name is not None else ''
165
+ header += '-' * row_width + '\n'
166
+ header += table_header + '\n' + '-' * row_width
167
+
168
+ eval_time = str(timedelta(seconds=int(elapsed_time)))
169
+ table_row = f'|{brs_type:^13}|{dataset_name:^11}|'
170
+ table_row += f'{noc_list[0]:^9.2f}|'
171
+ table_row += f'{noc_list[1]:^9.2f}|' if len(noc_list) > 1 else f'{"?":^9}|'
172
+ table_row += f'{noc_list[2]:^9.2f}|' if len(noc_list) > 2 else f'{"?":^9}|'
173
+ table_row += f'{over_max_list[1]:^9}|' if len(noc_list) > 1 else f'{"?":^9}|'
174
+ table_row += f'{over_max_list[2]:^9}|' if len(noc_list) > 2 else f'{"?":^9}|'
175
+ table_row += f'{mean_spc:^7.3f}|{eval_time:^9}|'
176
+
177
+ return header, table_row
inference/interact/fbrs/model/__init__.py ADDED
File without changes
inference/interact/fbrs/model/initializer.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import numpy as np
4
+
5
+
6
+ class Initializer(object):
7
+ def __init__(self, local_init=True, gamma=None):
8
+ self.local_init = local_init
9
+ self.gamma = gamma
10
+
11
+ def __call__(self, m):
12
+ if getattr(m, '__initialized', False):
13
+ return
14
+
15
+ if isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d,
16
+ nn.InstanceNorm1d, nn.InstanceNorm2d, nn.InstanceNorm3d,
17
+ nn.GroupNorm, nn.SyncBatchNorm)) or 'BatchNorm' in m.__class__.__name__:
18
+ if m.weight is not None:
19
+ self._init_gamma(m.weight.data)
20
+ if m.bias is not None:
21
+ self._init_beta(m.bias.data)
22
+ else:
23
+ if getattr(m, 'weight', None) is not None:
24
+ self._init_weight(m.weight.data)
25
+ if getattr(m, 'bias', None) is not None:
26
+ self._init_bias(m.bias.data)
27
+
28
+ if self.local_init:
29
+ object.__setattr__(m, '__initialized', True)
30
+
31
+ def _init_weight(self, data):
32
+ nn.init.uniform_(data, -0.07, 0.07)
33
+
34
+ def _init_bias(self, data):
35
+ nn.init.constant_(data, 0)
36
+
37
+ def _init_gamma(self, data):
38
+ if self.gamma is None:
39
+ nn.init.constant_(data, 1.0)
40
+ else:
41
+ nn.init.normal_(data, 1.0, self.gamma)
42
+
43
+ def _init_beta(self, data):
44
+ nn.init.constant_(data, 0)
45
+
46
+
47
+ class Bilinear(Initializer):
48
+ def __init__(self, scale, groups, in_channels, **kwargs):
49
+ super().__init__(**kwargs)
50
+ self.scale = scale
51
+ self.groups = groups
52
+ self.in_channels = in_channels
53
+
54
+ def _init_weight(self, data):
55
+ """Reset the weight and bias."""
56
+ bilinear_kernel = self.get_bilinear_kernel(self.scale)
57
+ weight = torch.zeros_like(data)
58
+ for i in range(self.in_channels):
59
+ if self.groups == 1:
60
+ j = i
61
+ else:
62
+ j = 0
63
+ weight[i, j] = bilinear_kernel
64
+ data[:] = weight
65
+
66
+ @staticmethod
67
+ def get_bilinear_kernel(scale):
68
+ """Generate a bilinear upsampling kernel."""
69
+ kernel_size = 2 * scale - scale % 2
70
+ scale = (kernel_size + 1) // 2
71
+ center = scale - 0.5 * (1 + kernel_size % 2)
72
+
73
+ og = np.ogrid[:kernel_size, :kernel_size]
74
+ kernel = (1 - np.abs(og[0] - center) / scale) * (1 - np.abs(og[1] - center) / scale)
75
+
76
+ return torch.tensor(kernel, dtype=torch.float32)
77
+
78
+
79
+ class XavierGluon(Initializer):
80
+ def __init__(self, rnd_type='uniform', factor_type='avg', magnitude=3, **kwargs):
81
+ super().__init__(**kwargs)
82
+
83
+ self.rnd_type = rnd_type
84
+ self.factor_type = factor_type
85
+ self.magnitude = float(magnitude)
86
+
87
+ def _init_weight(self, arr):
88
+ fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(arr)
89
+
90
+ if self.factor_type == 'avg':
91
+ factor = (fan_in + fan_out) / 2.0
92
+ elif self.factor_type == 'in':
93
+ factor = fan_in
94
+ elif self.factor_type == 'out':
95
+ factor = fan_out
96
+ else:
97
+ raise ValueError('Incorrect factor type')
98
+ scale = np.sqrt(self.magnitude / factor)
99
+
100
+ if self.rnd_type == 'uniform':
101
+ nn.init.uniform_(arr, -scale, scale)
102
+ elif self.rnd_type == 'gaussian':
103
+ nn.init.normal_(arr, 0, scale)
104
+ else:
105
+ raise ValueError('Unknown random type')
inference/interact/fbrs/model/is_deeplab_model.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from .ops import DistMaps
5
+ from .modeling.deeplab_v3 import DeepLabV3Plus
6
+ from .modeling.basic_blocks import SepConvHead
7
+
8
+
9
+ def get_deeplab_model(backbone='resnet50', deeplab_ch=256, aspp_dropout=0.5,
10
+ norm_layer=nn.BatchNorm2d, backbone_norm_layer=None,
11
+ use_rgb_conv=True, cpu_dist_maps=False,
12
+ norm_radius=260):
13
+ model = DistMapsModel(
14
+ feature_extractor=DeepLabV3Plus(backbone=backbone,
15
+ ch=deeplab_ch,
16
+ project_dropout=aspp_dropout,
17
+ norm_layer=norm_layer,
18
+ backbone_norm_layer=backbone_norm_layer),
19
+ head=SepConvHead(1, in_channels=deeplab_ch, mid_channels=deeplab_ch // 2,
20
+ num_layers=2, norm_layer=norm_layer),
21
+ use_rgb_conv=use_rgb_conv,
22
+ norm_layer=norm_layer,
23
+ norm_radius=norm_radius,
24
+ cpu_dist_maps=cpu_dist_maps
25
+ )
26
+
27
+ return model
28
+
29
+
30
+ class DistMapsModel(nn.Module):
31
+ def __init__(self, feature_extractor, head, norm_layer=nn.BatchNorm2d, use_rgb_conv=True,
32
+ cpu_dist_maps=False, norm_radius=260):
33
+ super(DistMapsModel, self).__init__()
34
+
35
+ if use_rgb_conv:
36
+ self.rgb_conv = nn.Sequential(
37
+ nn.Conv2d(in_channels=5, out_channels=8, kernel_size=1),
38
+ nn.LeakyReLU(negative_slope=0.2),
39
+ norm_layer(8),
40
+ nn.Conv2d(in_channels=8, out_channels=3, kernel_size=1),
41
+ )
42
+ else:
43
+ self.rgb_conv = None
44
+
45
+ self.dist_maps = DistMaps(norm_radius=norm_radius, spatial_scale=1.0,
46
+ cpu_mode=cpu_dist_maps)
47
+ self.feature_extractor = feature_extractor
48
+ self.head = head
49
+
50
+ def forward(self, image, points):
51
+ coord_features = self.dist_maps(image, points)
52
+
53
+ if self.rgb_conv is not None:
54
+ x = self.rgb_conv(torch.cat((image, coord_features), dim=1))
55
+ else:
56
+ c1, c2 = torch.chunk(coord_features, 2, dim=1)
57
+ c3 = torch.ones_like(c1)
58
+ coord_features = torch.cat((c1, c2, c3), dim=1)
59
+ x = 0.8 * image * coord_features + 0.2 * image
60
+
61
+ backbone_features = self.feature_extractor(x)
62
+ instance_out = self.head(backbone_features[0])
63
+ instance_out = nn.functional.interpolate(instance_out, size=image.size()[2:],
64
+ mode='bilinear', align_corners=True)
65
+
66
+ return {'instances': instance_out}
67
+
68
+ def load_weights(self, path_to_weights):
69
+ current_state_dict = self.state_dict()
70
+ new_state_dict = torch.load(path_to_weights, map_location='cpu')
71
+ current_state_dict.update(new_state_dict)
72
+ self.load_state_dict(current_state_dict)
73
+
74
+ def get_trainable_params(self):
75
+ backbone_params = nn.ParameterList()
76
+ other_params = nn.ParameterList()
77
+
78
+ for name, param in self.named_parameters():
79
+ if param.requires_grad:
80
+ if 'backbone' in name:
81
+ backbone_params.append(param)
82
+ else:
83
+ other_params.append(param)
84
+ return backbone_params, other_params
85
+
86
+
inference/interact/fbrs/model/is_hrnet_model.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from .ops import DistMaps
5
+ from .modeling.hrnet_ocr import HighResolutionNet
6
+
7
+
8
+ def get_hrnet_model(width=48, ocr_width=256, small=False, norm_radius=260,
9
+ use_rgb_conv=True, with_aux_output=False, cpu_dist_maps=False,
10
+ norm_layer=nn.BatchNorm2d):
11
+ model = DistMapsHRNetModel(
12
+ feature_extractor=HighResolutionNet(width=width, ocr_width=ocr_width, small=small,
13
+ num_classes=1, norm_layer=norm_layer),
14
+ use_rgb_conv=use_rgb_conv,
15
+ with_aux_output=with_aux_output,
16
+ norm_layer=norm_layer,
17
+ norm_radius=norm_radius,
18
+ cpu_dist_maps=cpu_dist_maps
19
+ )
20
+
21
+ return model
22
+
23
+
24
+ class DistMapsHRNetModel(nn.Module):
25
+ def __init__(self, feature_extractor, use_rgb_conv=True, with_aux_output=False,
26
+ norm_layer=nn.BatchNorm2d, norm_radius=260, cpu_dist_maps=False):
27
+ super(DistMapsHRNetModel, self).__init__()
28
+ self.with_aux_output = with_aux_output
29
+
30
+ if use_rgb_conv:
31
+ self.rgb_conv = nn.Sequential(
32
+ nn.Conv2d(in_channels=5, out_channels=8, kernel_size=1),
33
+ nn.LeakyReLU(negative_slope=0.2),
34
+ norm_layer(8),
35
+ nn.Conv2d(in_channels=8, out_channels=3, kernel_size=1),
36
+ )
37
+ else:
38
+ self.rgb_conv = None
39
+
40
+ self.dist_maps = DistMaps(norm_radius=norm_radius, spatial_scale=1.0, cpu_mode=cpu_dist_maps)
41
+ self.feature_extractor = feature_extractor
42
+
43
+ def forward(self, image, points):
44
+ coord_features = self.dist_maps(image, points)
45
+
46
+ if self.rgb_conv is not None:
47
+ x = self.rgb_conv(torch.cat((image, coord_features), dim=1))
48
+ else:
49
+ c1, c2 = torch.chunk(coord_features, 2, dim=1)
50
+ c3 = torch.ones_like(c1)
51
+ coord_features = torch.cat((c1, c2, c3), dim=1)
52
+ x = 0.8 * image * coord_features + 0.2 * image
53
+
54
+ feature_extractor_out = self.feature_extractor(x)
55
+ instance_out = feature_extractor_out[0]
56
+ instance_out = nn.functional.interpolate(instance_out, size=image.size()[2:],
57
+ mode='bilinear', align_corners=True)
58
+ outputs = {'instances': instance_out}
59
+ if self.with_aux_output:
60
+ instance_aux_out = feature_extractor_out[1]
61
+ instance_aux_out = nn.functional.interpolate(instance_aux_out, size=image.size()[2:],
62
+ mode='bilinear', align_corners=True)
63
+ outputs['instances_aux'] = instance_aux_out
64
+
65
+ return outputs
66
+
67
+ def load_weights(self, path_to_weights):
68
+ current_state_dict = self.state_dict()
69
+ new_state_dict = torch.load(path_to_weights)
70
+ current_state_dict.update(new_state_dict)
71
+ self.load_state_dict(current_state_dict)
72
+
73
+ def get_trainable_params(self):
74
+ backbone_params = nn.ParameterList()
75
+ other_params = nn.ParameterList()
76
+ other_params_keys = []
77
+ nonbackbone_keywords = ['rgb_conv', 'aux_head', 'cls_head', 'conv3x3_ocr', 'ocr_distri_head']
78
+
79
+ for name, param in self.named_parameters():
80
+ if param.requires_grad:
81
+ if any(x in name for x in nonbackbone_keywords):
82
+ other_params.append(param)
83
+ other_params_keys.append(name)
84
+ else:
85
+ backbone_params.append(param)
86
+ print('Nonbackbone params:', sorted(other_params_keys))
87
+ return backbone_params, other_params
inference/interact/fbrs/model/losses.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+
6
+ from ..utils import misc
7
+
8
+
9
+ class NormalizedFocalLossSigmoid(nn.Module):
10
+ def __init__(self, axis=-1, alpha=0.25, gamma=2,
11
+ from_logits=False, batch_axis=0,
12
+ weight=None, size_average=True, detach_delimeter=True,
13
+ eps=1e-12, scale=1.0,
14
+ ignore_label=-1):
15
+ super(NormalizedFocalLossSigmoid, self).__init__()
16
+ self._axis = axis
17
+ self._alpha = alpha
18
+ self._gamma = gamma
19
+ self._ignore_label = ignore_label
20
+ self._weight = weight if weight is not None else 1.0
21
+ self._batch_axis = batch_axis
22
+
23
+ self._scale = scale
24
+ self._from_logits = from_logits
25
+ self._eps = eps
26
+ self._size_average = size_average
27
+ self._detach_delimeter = detach_delimeter
28
+ self._k_sum = 0
29
+
30
+ def forward(self, pred, label, sample_weight=None):
31
+ one_hot = label > 0
32
+ sample_weight = label != self._ignore_label
33
+
34
+ if not self._from_logits:
35
+ pred = torch.sigmoid(pred)
36
+
37
+ alpha = torch.where(one_hot, self._alpha * sample_weight, (1 - self._alpha) * sample_weight)
38
+ pt = torch.where(one_hot, pred, 1 - pred)
39
+ pt = torch.where(sample_weight, pt, torch.ones_like(pt))
40
+
41
+ beta = (1 - pt) ** self._gamma
42
+
43
+ sw_sum = torch.sum(sample_weight, dim=(-2, -1), keepdim=True)
44
+ beta_sum = torch.sum(beta, dim=(-2, -1), keepdim=True)
45
+ mult = sw_sum / (beta_sum + self._eps)
46
+ if self._detach_delimeter:
47
+ mult = mult.detach()
48
+ beta = beta * mult
49
+
50
+ ignore_area = torch.sum(label == self._ignore_label, dim=tuple(range(1, label.dim()))).cpu().numpy()
51
+ sample_mult = torch.mean(mult, dim=tuple(range(1, mult.dim()))).cpu().numpy()
52
+ if np.any(ignore_area == 0):
53
+ self._k_sum = 0.9 * self._k_sum + 0.1 * sample_mult[ignore_area == 0].mean()
54
+
55
+ loss = -alpha * beta * torch.log(torch.min(pt + self._eps, torch.ones(1, dtype=torch.float).to(pt.device)))
56
+ loss = self._weight * (loss * sample_weight)
57
+
58
+ if self._size_average:
59
+ bsum = torch.sum(sample_weight, dim=misc.get_dims_with_exclusion(sample_weight.dim(), self._batch_axis))
60
+ loss = torch.sum(loss, dim=misc.get_dims_with_exclusion(loss.dim(), self._batch_axis)) / (bsum + self._eps)
61
+ else:
62
+ loss = torch.sum(loss, dim=misc.get_dims_with_exclusion(loss.dim(), self._batch_axis))
63
+
64
+ return self._scale * loss
65
+
66
+ def log_states(self, sw, name, global_step):
67
+ sw.add_scalar(tag=name + '_k', value=self._k_sum, global_step=global_step)
68
+
69
+
70
+ class FocalLoss(nn.Module):
71
+ def __init__(self, axis=-1, alpha=0.25, gamma=2,
72
+ from_logits=False, batch_axis=0,
73
+ weight=None, num_class=None,
74
+ eps=1e-9, size_average=True, scale=1.0):
75
+ super(FocalLoss, self).__init__()
76
+ self._axis = axis
77
+ self._alpha = alpha
78
+ self._gamma = gamma
79
+ self._weight = weight if weight is not None else 1.0
80
+ self._batch_axis = batch_axis
81
+
82
+ self._scale = scale
83
+ self._num_class = num_class
84
+ self._from_logits = from_logits
85
+ self._eps = eps
86
+ self._size_average = size_average
87
+
88
+ def forward(self, pred, label, sample_weight=None):
89
+ if not self._from_logits:
90
+ pred = F.sigmoid(pred)
91
+
92
+ one_hot = label > 0
93
+ pt = torch.where(one_hot, pred, 1 - pred)
94
+
95
+ t = label != -1
96
+ alpha = torch.where(one_hot, self._alpha * t, (1 - self._alpha) * t)
97
+ beta = (1 - pt) ** self._gamma
98
+
99
+ loss = -alpha * beta * torch.log(torch.min(pt + self._eps, torch.ones(1, dtype=torch.float).to(pt.device)))
100
+ sample_weight = label != -1
101
+
102
+ loss = self._weight * (loss * sample_weight)
103
+
104
+ if self._size_average:
105
+ tsum = torch.sum(label == 1, dim=misc.get_dims_with_exclusion(label.dim(), self._batch_axis))
106
+ loss = torch.sum(loss, dim=misc.get_dims_with_exclusion(loss.dim(), self._batch_axis)) / (tsum + self._eps)
107
+ else:
108
+ loss = torch.sum(loss, dim=misc.get_dims_with_exclusion(loss.dim(), self._batch_axis))
109
+
110
+ return self._scale * loss
111
+
112
+
113
+ class SigmoidBinaryCrossEntropyLoss(nn.Module):
114
+ def __init__(self, from_sigmoid=False, weight=None, batch_axis=0, ignore_label=-1):
115
+ super(SigmoidBinaryCrossEntropyLoss, self).__init__()
116
+ self._from_sigmoid = from_sigmoid
117
+ self._ignore_label = ignore_label
118
+ self._weight = weight if weight is not None else 1.0
119
+ self._batch_axis = batch_axis
120
+
121
+ def forward(self, pred, label):
122
+ label = label.view(pred.size())
123
+ sample_weight = label != self._ignore_label
124
+ label = torch.where(sample_weight, label, torch.zeros_like(label))
125
+
126
+ if not self._from_sigmoid:
127
+ loss = torch.relu(pred) - pred * label + F.softplus(-torch.abs(pred))
128
+ else:
129
+ eps = 1e-12
130
+ loss = -(torch.log(pred + eps) * label
131
+ + torch.log(1. - pred + eps) * (1. - label))
132
+
133
+ loss = self._weight * (loss * sample_weight)
134
+ return torch.mean(loss, dim=misc.get_dims_with_exclusion(loss.dim(), self._batch_axis))
inference/interact/fbrs/model/metrics.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+
4
+ from ..utils import misc
5
+
6
+
7
+ class TrainMetric(object):
8
+ def __init__(self, pred_outputs, gt_outputs):
9
+ self.pred_outputs = pred_outputs
10
+ self.gt_outputs = gt_outputs
11
+
12
+ def update(self, *args, **kwargs):
13
+ raise NotImplementedError
14
+
15
+ def get_epoch_value(self):
16
+ raise NotImplementedError
17
+
18
+ def reset_epoch_stats(self):
19
+ raise NotImplementedError
20
+
21
+ def log_states(self, sw, tag_prefix, global_step):
22
+ pass
23
+
24
+ @property
25
+ def name(self):
26
+ return type(self).__name__
27
+
28
+
29
+ class AdaptiveIoU(TrainMetric):
30
+ def __init__(self, init_thresh=0.4, thresh_step=0.025, thresh_beta=0.99, iou_beta=0.9,
31
+ ignore_label=-1, from_logits=True,
32
+ pred_output='instances', gt_output='instances'):
33
+ super().__init__(pred_outputs=(pred_output,), gt_outputs=(gt_output,))
34
+ self._ignore_label = ignore_label
35
+ self._from_logits = from_logits
36
+ self._iou_thresh = init_thresh
37
+ self._thresh_step = thresh_step
38
+ self._thresh_beta = thresh_beta
39
+ self._iou_beta = iou_beta
40
+ self._ema_iou = 0.0
41
+ self._epoch_iou_sum = 0.0
42
+ self._epoch_batch_count = 0
43
+
44
+ def update(self, pred, gt):
45
+ gt_mask = gt > 0
46
+ if self._from_logits:
47
+ pred = torch.sigmoid(pred)
48
+
49
+ gt_mask_area = torch.sum(gt_mask, dim=(1, 2)).detach().cpu().numpy()
50
+ if np.all(gt_mask_area == 0):
51
+ return
52
+
53
+ ignore_mask = gt == self._ignore_label
54
+ max_iou = _compute_iou(pred > self._iou_thresh, gt_mask, ignore_mask).mean()
55
+ best_thresh = self._iou_thresh
56
+ for t in [best_thresh - self._thresh_step, best_thresh + self._thresh_step]:
57
+ temp_iou = _compute_iou(pred > t, gt_mask, ignore_mask).mean()
58
+ if temp_iou > max_iou:
59
+ max_iou = temp_iou
60
+ best_thresh = t
61
+
62
+ self._iou_thresh = self._thresh_beta * self._iou_thresh + (1 - self._thresh_beta) * best_thresh
63
+ self._ema_iou = self._iou_beta * self._ema_iou + (1 - self._iou_beta) * max_iou
64
+ self._epoch_iou_sum += max_iou
65
+ self._epoch_batch_count += 1
66
+
67
+ def get_epoch_value(self):
68
+ if self._epoch_batch_count > 0:
69
+ return self._epoch_iou_sum / self._epoch_batch_count
70
+ else:
71
+ return 0.0
72
+
73
+ def reset_epoch_stats(self):
74
+ self._epoch_iou_sum = 0.0
75
+ self._epoch_batch_count = 0
76
+
77
+ def log_states(self, sw, tag_prefix, global_step):
78
+ sw.add_scalar(tag=tag_prefix + '_ema_iou', value=self._ema_iou, global_step=global_step)
79
+ sw.add_scalar(tag=tag_prefix + '_iou_thresh', value=self._iou_thresh, global_step=global_step)
80
+
81
+ @property
82
+ def iou_thresh(self):
83
+ return self._iou_thresh
84
+
85
+
86
+ def _compute_iou(pred_mask, gt_mask, ignore_mask=None, keep_ignore=False):
87
+ if ignore_mask is not None:
88
+ pred_mask = torch.where(ignore_mask, torch.zeros_like(pred_mask), pred_mask)
89
+
90
+ reduction_dims = misc.get_dims_with_exclusion(gt_mask.dim(), 0)
91
+ union = torch.mean((pred_mask | gt_mask).float(), dim=reduction_dims).detach().cpu().numpy()
92
+ intersection = torch.mean((pred_mask & gt_mask).float(), dim=reduction_dims).detach().cpu().numpy()
93
+ nonzero = union > 0
94
+
95
+ iou = intersection[nonzero] / union[nonzero]
96
+ if not keep_ignore:
97
+ return iou
98
+ else:
99
+ result = np.full_like(intersection, -1)
100
+ result[nonzero] = iou
101
+ return result
inference/interact/fbrs/model/modeling/__init__.py ADDED
File without changes
inference/interact/fbrs/model/modeling/basic_blocks.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+
3
+ from ...model import ops
4
+
5
+
6
+ class ConvHead(nn.Module):
7
+ def __init__(self, out_channels, in_channels=32, num_layers=1,
8
+ kernel_size=3, padding=1,
9
+ norm_layer=nn.BatchNorm2d):
10
+ super(ConvHead, self).__init__()
11
+ convhead = []
12
+
13
+ for i in range(num_layers):
14
+ convhead.extend([
15
+ nn.Conv2d(in_channels, in_channels, kernel_size, padding=padding),
16
+ nn.ReLU(),
17
+ norm_layer(in_channels) if norm_layer is not None else nn.Identity()
18
+ ])
19
+ convhead.append(nn.Conv2d(in_channels, out_channels, 1, padding=0))
20
+
21
+ self.convhead = nn.Sequential(*convhead)
22
+
23
+ def forward(self, *inputs):
24
+ return self.convhead(inputs[0])
25
+
26
+
27
+ class SepConvHead(nn.Module):
28
+ def __init__(self, num_outputs, in_channels, mid_channels, num_layers=1,
29
+ kernel_size=3, padding=1, dropout_ratio=0.0, dropout_indx=0,
30
+ norm_layer=nn.BatchNorm2d):
31
+ super(SepConvHead, self).__init__()
32
+
33
+ sepconvhead = []
34
+
35
+ for i in range(num_layers):
36
+ sepconvhead.append(
37
+ SeparableConv2d(in_channels=in_channels if i == 0 else mid_channels,
38
+ out_channels=mid_channels,
39
+ dw_kernel=kernel_size, dw_padding=padding,
40
+ norm_layer=norm_layer, activation='relu')
41
+ )
42
+ if dropout_ratio > 0 and dropout_indx == i:
43
+ sepconvhead.append(nn.Dropout(dropout_ratio))
44
+
45
+ sepconvhead.append(
46
+ nn.Conv2d(in_channels=mid_channels, out_channels=num_outputs, kernel_size=1, padding=0)
47
+ )
48
+
49
+ self.layers = nn.Sequential(*sepconvhead)
50
+
51
+ def forward(self, *inputs):
52
+ x = inputs[0]
53
+
54
+ return self.layers(x)
55
+
56
+
57
+ class SeparableConv2d(nn.Module):
58
+ def __init__(self, in_channels, out_channels, dw_kernel, dw_padding, dw_stride=1,
59
+ activation=None, use_bias=False, norm_layer=None):
60
+ super(SeparableConv2d, self).__init__()
61
+ _activation = ops.select_activation_function(activation)
62
+ self.body = nn.Sequential(
63
+ nn.Conv2d(in_channels, in_channels, kernel_size=dw_kernel, stride=dw_stride,
64
+ padding=dw_padding, bias=use_bias, groups=in_channels),
65
+ nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=use_bias),
66
+ norm_layer(out_channels) if norm_layer is not None else nn.Identity(),
67
+ _activation()
68
+ )
69
+
70
+ def forward(self, x):
71
+ return self.body(x)
inference/interact/fbrs/model/modeling/deeplab_v3.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from contextlib import ExitStack
2
+
3
+ import torch
4
+ from torch import nn
5
+ import torch.nn.functional as F
6
+
7
+ from .basic_blocks import SeparableConv2d
8
+ from .resnet import ResNetBackbone
9
+ from ...model import ops
10
+
11
+
12
+ class DeepLabV3Plus(nn.Module):
13
+ def __init__(self, backbone='resnet50', norm_layer=nn.BatchNorm2d,
14
+ backbone_norm_layer=None,
15
+ ch=256,
16
+ project_dropout=0.5,
17
+ inference_mode=False,
18
+ **kwargs):
19
+ super(DeepLabV3Plus, self).__init__()
20
+ if backbone_norm_layer is None:
21
+ backbone_norm_layer = norm_layer
22
+
23
+ self.backbone_name = backbone
24
+ self.norm_layer = norm_layer
25
+ self.backbone_norm_layer = backbone_norm_layer
26
+ self.inference_mode = False
27
+ self.ch = ch
28
+ self.aspp_in_channels = 2048
29
+ self.skip_project_in_channels = 256 # layer 1 out_channels
30
+
31
+ self._kwargs = kwargs
32
+ if backbone == 'resnet34':
33
+ self.aspp_in_channels = 512
34
+ self.skip_project_in_channels = 64
35
+
36
+ self.backbone = ResNetBackbone(backbone=self.backbone_name, pretrained_base=False,
37
+ norm_layer=self.backbone_norm_layer, **kwargs)
38
+
39
+ self.head = _DeepLabHead(in_channels=ch + 32, mid_channels=ch, out_channels=ch,
40
+ norm_layer=self.norm_layer)
41
+ self.skip_project = _SkipProject(self.skip_project_in_channels, 32, norm_layer=self.norm_layer)
42
+ self.aspp = _ASPP(in_channels=self.aspp_in_channels,
43
+ atrous_rates=[12, 24, 36],
44
+ out_channels=ch,
45
+ project_dropout=project_dropout,
46
+ norm_layer=self.norm_layer)
47
+
48
+ if inference_mode:
49
+ self.set_prediction_mode()
50
+
51
+ def load_pretrained_weights(self):
52
+ pretrained = ResNetBackbone(backbone=self.backbone_name, pretrained_base=True,
53
+ norm_layer=self.backbone_norm_layer, **self._kwargs)
54
+ backbone_state_dict = self.backbone.state_dict()
55
+ pretrained_state_dict = pretrained.state_dict()
56
+
57
+ backbone_state_dict.update(pretrained_state_dict)
58
+ self.backbone.load_state_dict(backbone_state_dict)
59
+
60
+ if self.inference_mode:
61
+ for param in self.backbone.parameters():
62
+ param.requires_grad = False
63
+
64
+ def set_prediction_mode(self):
65
+ self.inference_mode = True
66
+ self.eval()
67
+
68
+ def forward(self, x):
69
+ with ExitStack() as stack:
70
+ if self.inference_mode:
71
+ stack.enter_context(torch.no_grad())
72
+
73
+ c1, _, c3, c4 = self.backbone(x)
74
+ c1 = self.skip_project(c1)
75
+
76
+ x = self.aspp(c4)
77
+ x = F.interpolate(x, c1.size()[2:], mode='bilinear', align_corners=True)
78
+ x = torch.cat((x, c1), dim=1)
79
+ x = self.head(x)
80
+
81
+ return x,
82
+
83
+
84
+ class _SkipProject(nn.Module):
85
+ def __init__(self, in_channels, out_channels, norm_layer=nn.BatchNorm2d):
86
+ super(_SkipProject, self).__init__()
87
+ _activation = ops.select_activation_function("relu")
88
+
89
+ self.skip_project = nn.Sequential(
90
+ nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
91
+ norm_layer(out_channels),
92
+ _activation()
93
+ )
94
+
95
+ def forward(self, x):
96
+ return self.skip_project(x)
97
+
98
+
99
+ class _DeepLabHead(nn.Module):
100
+ def __init__(self, out_channels, in_channels, mid_channels=256, norm_layer=nn.BatchNorm2d):
101
+ super(_DeepLabHead, self).__init__()
102
+
103
+ self.block = nn.Sequential(
104
+ SeparableConv2d(in_channels=in_channels, out_channels=mid_channels, dw_kernel=3,
105
+ dw_padding=1, activation='relu', norm_layer=norm_layer),
106
+ SeparableConv2d(in_channels=mid_channels, out_channels=mid_channels, dw_kernel=3,
107
+ dw_padding=1, activation='relu', norm_layer=norm_layer),
108
+ nn.Conv2d(in_channels=mid_channels, out_channels=out_channels, kernel_size=1)
109
+ )
110
+
111
+ def forward(self, x):
112
+ return self.block(x)
113
+
114
+
115
+ class _ASPP(nn.Module):
116
+ def __init__(self, in_channels, atrous_rates, out_channels=256,
117
+ project_dropout=0.5, norm_layer=nn.BatchNorm2d):
118
+ super(_ASPP, self).__init__()
119
+
120
+ b0 = nn.Sequential(
121
+ nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=False),
122
+ norm_layer(out_channels),
123
+ nn.ReLU()
124
+ )
125
+
126
+ rate1, rate2, rate3 = tuple(atrous_rates)
127
+ b1 = _ASPPConv(in_channels, out_channels, rate1, norm_layer)
128
+ b2 = _ASPPConv(in_channels, out_channels, rate2, norm_layer)
129
+ b3 = _ASPPConv(in_channels, out_channels, rate3, norm_layer)
130
+ b4 = _AsppPooling(in_channels, out_channels, norm_layer=norm_layer)
131
+
132
+ self.concurent = nn.ModuleList([b0, b1, b2, b3, b4])
133
+
134
+ project = [
135
+ nn.Conv2d(in_channels=5*out_channels, out_channels=out_channels,
136
+ kernel_size=1, bias=False),
137
+ norm_layer(out_channels),
138
+ nn.ReLU()
139
+ ]
140
+ if project_dropout > 0:
141
+ project.append(nn.Dropout(project_dropout))
142
+ self.project = nn.Sequential(*project)
143
+
144
+ def forward(self, x):
145
+ x = torch.cat([block(x) for block in self.concurent], dim=1)
146
+
147
+ return self.project(x)
148
+
149
+
150
+ class _AsppPooling(nn.Module):
151
+ def __init__(self, in_channels, out_channels, norm_layer):
152
+ super(_AsppPooling, self).__init__()
153
+
154
+ self.gap = nn.Sequential(
155
+ nn.AdaptiveAvgPool2d((1, 1)),
156
+ nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
157
+ kernel_size=1, bias=False),
158
+ norm_layer(out_channels),
159
+ nn.ReLU()
160
+ )
161
+
162
+ def forward(self, x):
163
+ pool = self.gap(x)
164
+ return F.interpolate(pool, x.size()[2:], mode='bilinear', align_corners=True)
165
+
166
+
167
+ def _ASPPConv(in_channels, out_channels, atrous_rate, norm_layer):
168
+ block = nn.Sequential(
169
+ nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
170
+ kernel_size=3, padding=atrous_rate,
171
+ dilation=atrous_rate, bias=False),
172
+ norm_layer(out_channels),
173
+ nn.ReLU()
174
+ )
175
+
176
+ return block
inference/interact/fbrs/model/modeling/hrnet_ocr.py ADDED
@@ -0,0 +1,399 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch._utils
6
+ import torch.nn.functional as F
7
+ from .ocr import SpatialOCR_Module, SpatialGather_Module
8
+ from .resnetv1b import BasicBlockV1b, BottleneckV1b
9
+
10
+ relu_inplace = True
11
+
12
+
13
+ class HighResolutionModule(nn.Module):
14
+ def __init__(self, num_branches, blocks, num_blocks, num_inchannels,
15
+ num_channels, fuse_method,multi_scale_output=True,
16
+ norm_layer=nn.BatchNorm2d, align_corners=True):
17
+ super(HighResolutionModule, self).__init__()
18
+ self._check_branches(num_branches, num_blocks, num_inchannels, num_channels)
19
+
20
+ self.num_inchannels = num_inchannels
21
+ self.fuse_method = fuse_method
22
+ self.num_branches = num_branches
23
+ self.norm_layer = norm_layer
24
+ self.align_corners = align_corners
25
+
26
+ self.multi_scale_output = multi_scale_output
27
+
28
+ self.branches = self._make_branches(
29
+ num_branches, blocks, num_blocks, num_channels)
30
+ self.fuse_layers = self._make_fuse_layers()
31
+ self.relu = nn.ReLU(inplace=relu_inplace)
32
+
33
+ def _check_branches(self, num_branches, num_blocks, num_inchannels, num_channels):
34
+ if num_branches != len(num_blocks):
35
+ error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format(
36
+ num_branches, len(num_blocks))
37
+ raise ValueError(error_msg)
38
+
39
+ if num_branches != len(num_channels):
40
+ error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format(
41
+ num_branches, len(num_channels))
42
+ raise ValueError(error_msg)
43
+
44
+ if num_branches != len(num_inchannels):
45
+ error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format(
46
+ num_branches, len(num_inchannels))
47
+ raise ValueError(error_msg)
48
+
49
+ def _make_one_branch(self, branch_index, block, num_blocks, num_channels,
50
+ stride=1):
51
+ downsample = None
52
+ if stride != 1 or \
53
+ self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion:
54
+ downsample = nn.Sequential(
55
+ nn.Conv2d(self.num_inchannels[branch_index],
56
+ num_channels[branch_index] * block.expansion,
57
+ kernel_size=1, stride=stride, bias=False),
58
+ self.norm_layer(num_channels[branch_index] * block.expansion),
59
+ )
60
+
61
+ layers = []
62
+ layers.append(block(self.num_inchannels[branch_index],
63
+ num_channels[branch_index], stride,
64
+ downsample=downsample, norm_layer=self.norm_layer))
65
+ self.num_inchannels[branch_index] = \
66
+ num_channels[branch_index] * block.expansion
67
+ for i in range(1, num_blocks[branch_index]):
68
+ layers.append(block(self.num_inchannels[branch_index],
69
+ num_channels[branch_index],
70
+ norm_layer=self.norm_layer))
71
+
72
+ return nn.Sequential(*layers)
73
+
74
+ def _make_branches(self, num_branches, block, num_blocks, num_channels):
75
+ branches = []
76
+
77
+ for i in range(num_branches):
78
+ branches.append(
79
+ self._make_one_branch(i, block, num_blocks, num_channels))
80
+
81
+ return nn.ModuleList(branches)
82
+
83
+ def _make_fuse_layers(self):
84
+ if self.num_branches == 1:
85
+ return None
86
+
87
+ num_branches = self.num_branches
88
+ num_inchannels = self.num_inchannels
89
+ fuse_layers = []
90
+ for i in range(num_branches if self.multi_scale_output else 1):
91
+ fuse_layer = []
92
+ for j in range(num_branches):
93
+ if j > i:
94
+ fuse_layer.append(nn.Sequential(
95
+ nn.Conv2d(in_channels=num_inchannels[j],
96
+ out_channels=num_inchannels[i],
97
+ kernel_size=1,
98
+ bias=False),
99
+ self.norm_layer(num_inchannels[i])))
100
+ elif j == i:
101
+ fuse_layer.append(None)
102
+ else:
103
+ conv3x3s = []
104
+ for k in range(i - j):
105
+ if k == i - j - 1:
106
+ num_outchannels_conv3x3 = num_inchannels[i]
107
+ conv3x3s.append(nn.Sequential(
108
+ nn.Conv2d(num_inchannels[j],
109
+ num_outchannels_conv3x3,
110
+ kernel_size=3, stride=2, padding=1, bias=False),
111
+ self.norm_layer(num_outchannels_conv3x3)))
112
+ else:
113
+ num_outchannels_conv3x3 = num_inchannels[j]
114
+ conv3x3s.append(nn.Sequential(
115
+ nn.Conv2d(num_inchannels[j],
116
+ num_outchannels_conv3x3,
117
+ kernel_size=3, stride=2, padding=1, bias=False),
118
+ self.norm_layer(num_outchannels_conv3x3),
119
+ nn.ReLU(inplace=relu_inplace)))
120
+ fuse_layer.append(nn.Sequential(*conv3x3s))
121
+ fuse_layers.append(nn.ModuleList(fuse_layer))
122
+
123
+ return nn.ModuleList(fuse_layers)
124
+
125
+ def get_num_inchannels(self):
126
+ return self.num_inchannels
127
+
128
+ def forward(self, x):
129
+ if self.num_branches == 1:
130
+ return [self.branches[0](x[0])]
131
+
132
+ for i in range(self.num_branches):
133
+ x[i] = self.branches[i](x[i])
134
+
135
+ x_fuse = []
136
+ for i in range(len(self.fuse_layers)):
137
+ y = x[0] if i == 0 else self.fuse_layers[i][0](x[0])
138
+ for j in range(1, self.num_branches):
139
+ if i == j:
140
+ y = y + x[j]
141
+ elif j > i:
142
+ width_output = x[i].shape[-1]
143
+ height_output = x[i].shape[-2]
144
+ y = y + F.interpolate(
145
+ self.fuse_layers[i][j](x[j]),
146
+ size=[height_output, width_output],
147
+ mode='bilinear', align_corners=self.align_corners)
148
+ else:
149
+ y = y + self.fuse_layers[i][j](x[j])
150
+ x_fuse.append(self.relu(y))
151
+
152
+ return x_fuse
153
+
154
+
155
+ class HighResolutionNet(nn.Module):
156
+ def __init__(self, width, num_classes, ocr_width=256, small=False,
157
+ norm_layer=nn.BatchNorm2d, align_corners=True):
158
+ super(HighResolutionNet, self).__init__()
159
+ self.norm_layer = norm_layer
160
+ self.width = width
161
+ self.ocr_width = ocr_width
162
+ self.align_corners = align_corners
163
+
164
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False)
165
+ self.bn1 = norm_layer(64)
166
+ self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False)
167
+ self.bn2 = norm_layer(64)
168
+ self.relu = nn.ReLU(inplace=relu_inplace)
169
+
170
+ num_blocks = 2 if small else 4
171
+
172
+ stage1_num_channels = 64
173
+ self.layer1 = self._make_layer(BottleneckV1b, 64, stage1_num_channels, blocks=num_blocks)
174
+ stage1_out_channel = BottleneckV1b.expansion * stage1_num_channels
175
+
176
+ self.stage2_num_branches = 2
177
+ num_channels = [width, 2 * width]
178
+ num_inchannels = [
179
+ num_channels[i] * BasicBlockV1b.expansion for i in range(len(num_channels))]
180
+ self.transition1 = self._make_transition_layer(
181
+ [stage1_out_channel], num_inchannels)
182
+ self.stage2, pre_stage_channels = self._make_stage(
183
+ BasicBlockV1b, num_inchannels=num_inchannels, num_modules=1, num_branches=self.stage2_num_branches,
184
+ num_blocks=2 * [num_blocks], num_channels=num_channels)
185
+
186
+ self.stage3_num_branches = 3
187
+ num_channels = [width, 2 * width, 4 * width]
188
+ num_inchannels = [
189
+ num_channels[i] * BasicBlockV1b.expansion for i in range(len(num_channels))]
190
+ self.transition2 = self._make_transition_layer(
191
+ pre_stage_channels, num_inchannels)
192
+ self.stage3, pre_stage_channels = self._make_stage(
193
+ BasicBlockV1b, num_inchannels=num_inchannels,
194
+ num_modules=3 if small else 4, num_branches=self.stage3_num_branches,
195
+ num_blocks=3 * [num_blocks], num_channels=num_channels)
196
+
197
+ self.stage4_num_branches = 4
198
+ num_channels = [width, 2 * width, 4 * width, 8 * width]
199
+ num_inchannels = [
200
+ num_channels[i] * BasicBlockV1b.expansion for i in range(len(num_channels))]
201
+ self.transition3 = self._make_transition_layer(
202
+ pre_stage_channels, num_inchannels)
203
+ self.stage4, pre_stage_channels = self._make_stage(
204
+ BasicBlockV1b, num_inchannels=num_inchannels, num_modules=2 if small else 3,
205
+ num_branches=self.stage4_num_branches,
206
+ num_blocks=4 * [num_blocks], num_channels=num_channels)
207
+
208
+ last_inp_channels = np.int(np.sum(pre_stage_channels))
209
+ ocr_mid_channels = 2 * ocr_width
210
+ ocr_key_channels = ocr_width
211
+
212
+ self.conv3x3_ocr = nn.Sequential(
213
+ nn.Conv2d(last_inp_channels, ocr_mid_channels,
214
+ kernel_size=3, stride=1, padding=1),
215
+ norm_layer(ocr_mid_channels),
216
+ nn.ReLU(inplace=relu_inplace),
217
+ )
218
+ self.ocr_gather_head = SpatialGather_Module(num_classes)
219
+
220
+ self.ocr_distri_head = SpatialOCR_Module(in_channels=ocr_mid_channels,
221
+ key_channels=ocr_key_channels,
222
+ out_channels=ocr_mid_channels,
223
+ scale=1,
224
+ dropout=0.05,
225
+ norm_layer=norm_layer,
226
+ align_corners=align_corners)
227
+ self.cls_head = nn.Conv2d(
228
+ ocr_mid_channels, num_classes, kernel_size=1, stride=1, padding=0, bias=True)
229
+
230
+ self.aux_head = nn.Sequential(
231
+ nn.Conv2d(last_inp_channels, last_inp_channels,
232
+ kernel_size=1, stride=1, padding=0),
233
+ norm_layer(last_inp_channels),
234
+ nn.ReLU(inplace=relu_inplace),
235
+ nn.Conv2d(last_inp_channels, num_classes,
236
+ kernel_size=1, stride=1, padding=0, bias=True)
237
+ )
238
+
239
+ def _make_transition_layer(
240
+ self, num_channels_pre_layer, num_channels_cur_layer):
241
+ num_branches_cur = len(num_channels_cur_layer)
242
+ num_branches_pre = len(num_channels_pre_layer)
243
+
244
+ transition_layers = []
245
+ for i in range(num_branches_cur):
246
+ if i < num_branches_pre:
247
+ if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
248
+ transition_layers.append(nn.Sequential(
249
+ nn.Conv2d(num_channels_pre_layer[i],
250
+ num_channels_cur_layer[i],
251
+ kernel_size=3,
252
+ stride=1,
253
+ padding=1,
254
+ bias=False),
255
+ self.norm_layer(num_channels_cur_layer[i]),
256
+ nn.ReLU(inplace=relu_inplace)))
257
+ else:
258
+ transition_layers.append(None)
259
+ else:
260
+ conv3x3s = []
261
+ for j in range(i + 1 - num_branches_pre):
262
+ inchannels = num_channels_pre_layer[-1]
263
+ outchannels = num_channels_cur_layer[i] \
264
+ if j == i - num_branches_pre else inchannels
265
+ conv3x3s.append(nn.Sequential(
266
+ nn.Conv2d(inchannels, outchannels,
267
+ kernel_size=3, stride=2, padding=1, bias=False),
268
+ self.norm_layer(outchannels),
269
+ nn.ReLU(inplace=relu_inplace)))
270
+ transition_layers.append(nn.Sequential(*conv3x3s))
271
+
272
+ return nn.ModuleList(transition_layers)
273
+
274
+ def _make_layer(self, block, inplanes, planes, blocks, stride=1):
275
+ downsample = None
276
+ if stride != 1 or inplanes != planes * block.expansion:
277
+ downsample = nn.Sequential(
278
+ nn.Conv2d(inplanes, planes * block.expansion,
279
+ kernel_size=1, stride=stride, bias=False),
280
+ self.norm_layer(planes * block.expansion),
281
+ )
282
+
283
+ layers = []
284
+ layers.append(block(inplanes, planes, stride,
285
+ downsample=downsample, norm_layer=self.norm_layer))
286
+ inplanes = planes * block.expansion
287
+ for i in range(1, blocks):
288
+ layers.append(block(inplanes, planes, norm_layer=self.norm_layer))
289
+
290
+ return nn.Sequential(*layers)
291
+
292
+ def _make_stage(self, block, num_inchannels,
293
+ num_modules, num_branches, num_blocks, num_channels,
294
+ fuse_method='SUM',
295
+ multi_scale_output=True):
296
+ modules = []
297
+ for i in range(num_modules):
298
+ # multi_scale_output is only used last module
299
+ if not multi_scale_output and i == num_modules - 1:
300
+ reset_multi_scale_output = False
301
+ else:
302
+ reset_multi_scale_output = True
303
+ modules.append(
304
+ HighResolutionModule(num_branches,
305
+ block,
306
+ num_blocks,
307
+ num_inchannels,
308
+ num_channels,
309
+ fuse_method,
310
+ reset_multi_scale_output,
311
+ norm_layer=self.norm_layer,
312
+ align_corners=self.align_corners)
313
+ )
314
+ num_inchannels = modules[-1].get_num_inchannels()
315
+
316
+ return nn.Sequential(*modules), num_inchannels
317
+
318
+ def forward(self, x):
319
+ feats = self.compute_hrnet_feats(x)
320
+ out_aux = self.aux_head(feats)
321
+ feats = self.conv3x3_ocr(feats)
322
+
323
+ context = self.ocr_gather_head(feats, out_aux)
324
+ feats = self.ocr_distri_head(feats, context)
325
+ out = self.cls_head(feats)
326
+
327
+ return [out, out_aux]
328
+
329
+ def compute_hrnet_feats(self, x):
330
+ x = self.conv1(x)
331
+ x = self.bn1(x)
332
+ x = self.relu(x)
333
+ x = self.conv2(x)
334
+ x = self.bn2(x)
335
+ x = self.relu(x)
336
+ x = self.layer1(x)
337
+
338
+ x_list = []
339
+ for i in range(self.stage2_num_branches):
340
+ if self.transition1[i] is not None:
341
+ x_list.append(self.transition1[i](x))
342
+ else:
343
+ x_list.append(x)
344
+ y_list = self.stage2(x_list)
345
+
346
+ x_list = []
347
+ for i in range(self.stage3_num_branches):
348
+ if self.transition2[i] is not None:
349
+ if i < self.stage2_num_branches:
350
+ x_list.append(self.transition2[i](y_list[i]))
351
+ else:
352
+ x_list.append(self.transition2[i](y_list[-1]))
353
+ else:
354
+ x_list.append(y_list[i])
355
+ y_list = self.stage3(x_list)
356
+
357
+ x_list = []
358
+ for i in range(self.stage4_num_branches):
359
+ if self.transition3[i] is not None:
360
+ if i < self.stage3_num_branches:
361
+ x_list.append(self.transition3[i](y_list[i]))
362
+ else:
363
+ x_list.append(self.transition3[i](y_list[-1]))
364
+ else:
365
+ x_list.append(y_list[i])
366
+ x = self.stage4(x_list)
367
+
368
+ # Upsampling
369
+ x0_h, x0_w = x[0].size(2), x[0].size(3)
370
+ x1 = F.interpolate(x[1], size=(x0_h, x0_w),
371
+ mode='bilinear', align_corners=self.align_corners)
372
+ x2 = F.interpolate(x[2], size=(x0_h, x0_w),
373
+ mode='bilinear', align_corners=self.align_corners)
374
+ x3 = F.interpolate(x[3], size=(x0_h, x0_w),
375
+ mode='bilinear', align_corners=self.align_corners)
376
+
377
+ return torch.cat([x[0], x1, x2, x3], 1)
378
+
379
+ def load_pretrained_weights(self, pretrained_path=''):
380
+ model_dict = self.state_dict()
381
+
382
+ if not os.path.exists(pretrained_path):
383
+ print(f'\nFile "{pretrained_path}" does not exist.')
384
+ print('You need to specify the correct path to the pre-trained weights.\n'
385
+ 'You can download the weights for HRNet from the repository:\n'
386
+ 'https://github.com/HRNet/HRNet-Image-Classification')
387
+ exit(1)
388
+ pretrained_dict = torch.load(pretrained_path, map_location={'cuda:0': 'cpu'})
389
+ pretrained_dict = {k.replace('last_layer', 'aux_head').replace('model.', ''): v for k, v in
390
+ pretrained_dict.items()}
391
+
392
+ print('model_dict-pretrained_dict:', sorted(list(set(model_dict) - set(pretrained_dict))))
393
+ print('pretrained_dict-model_dict:', sorted(list(set(pretrained_dict) - set(model_dict))))
394
+
395
+ pretrained_dict = {k: v for k, v in pretrained_dict.items()
396
+ if k in model_dict.keys()}
397
+
398
+ model_dict.update(pretrained_dict)
399
+ self.load_state_dict(model_dict)
inference/interact/fbrs/model/modeling/ocr.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch._utils
4
+ import torch.nn.functional as F
5
+
6
+
7
+ class SpatialGather_Module(nn.Module):
8
+ """
9
+ Aggregate the context features according to the initial
10
+ predicted probability distribution.
11
+ Employ the soft-weighted method to aggregate the context.
12
+ """
13
+
14
+ def __init__(self, cls_num=0, scale=1):
15
+ super(SpatialGather_Module, self).__init__()
16
+ self.cls_num = cls_num
17
+ self.scale = scale
18
+
19
+ def forward(self, feats, probs):
20
+ batch_size, c, h, w = probs.size(0), probs.size(1), probs.size(2), probs.size(3)
21
+ probs = probs.view(batch_size, c, -1)
22
+ feats = feats.view(batch_size, feats.size(1), -1)
23
+ feats = feats.permute(0, 2, 1) # batch x hw x c
24
+ probs = F.softmax(self.scale * probs, dim=2) # batch x k x hw
25
+ ocr_context = torch.matmul(probs, feats) \
26
+ .permute(0, 2, 1).unsqueeze(3) # batch x k x c
27
+ return ocr_context
28
+
29
+
30
+ class SpatialOCR_Module(nn.Module):
31
+ """
32
+ Implementation of the OCR module:
33
+ We aggregate the global object representation to update the representation for each pixel.
34
+ """
35
+
36
+ def __init__(self,
37
+ in_channels,
38
+ key_channels,
39
+ out_channels,
40
+ scale=1,
41
+ dropout=0.1,
42
+ norm_layer=nn.BatchNorm2d,
43
+ align_corners=True):
44
+ super(SpatialOCR_Module, self).__init__()
45
+ self.object_context_block = ObjectAttentionBlock2D(in_channels, key_channels, scale,
46
+ norm_layer, align_corners)
47
+ _in_channels = 2 * in_channels
48
+
49
+ self.conv_bn_dropout = nn.Sequential(
50
+ nn.Conv2d(_in_channels, out_channels, kernel_size=1, padding=0, bias=False),
51
+ nn.Sequential(norm_layer(out_channels), nn.ReLU(inplace=True)),
52
+ nn.Dropout2d(dropout)
53
+ )
54
+
55
+ def forward(self, feats, proxy_feats):
56
+ context = self.object_context_block(feats, proxy_feats)
57
+
58
+ output = self.conv_bn_dropout(torch.cat([context, feats], 1))
59
+
60
+ return output
61
+
62
+
63
+ class ObjectAttentionBlock2D(nn.Module):
64
+ '''
65
+ The basic implementation for object context block
66
+ Input:
67
+ N X C X H X W
68
+ Parameters:
69
+ in_channels : the dimension of the input feature map
70
+ key_channels : the dimension after the key/query transform
71
+ scale : choose the scale to downsample the input feature maps (save memory cost)
72
+ bn_type : specify the bn type
73
+ Return:
74
+ N X C X H X W
75
+ '''
76
+
77
+ def __init__(self,
78
+ in_channels,
79
+ key_channels,
80
+ scale=1,
81
+ norm_layer=nn.BatchNorm2d,
82
+ align_corners=True):
83
+ super(ObjectAttentionBlock2D, self).__init__()
84
+ self.scale = scale
85
+ self.in_channels = in_channels
86
+ self.key_channels = key_channels
87
+ self.align_corners = align_corners
88
+
89
+ self.pool = nn.MaxPool2d(kernel_size=(scale, scale))
90
+ self.f_pixel = nn.Sequential(
91
+ nn.Conv2d(in_channels=self.in_channels, out_channels=self.key_channels,
92
+ kernel_size=1, stride=1, padding=0, bias=False),
93
+ nn.Sequential(norm_layer(self.key_channels), nn.ReLU(inplace=True)),
94
+ nn.Conv2d(in_channels=self.key_channels, out_channels=self.key_channels,
95
+ kernel_size=1, stride=1, padding=0, bias=False),
96
+ nn.Sequential(norm_layer(self.key_channels), nn.ReLU(inplace=True))
97
+ )
98
+ self.f_object = nn.Sequential(
99
+ nn.Conv2d(in_channels=self.in_channels, out_channels=self.key_channels,
100
+ kernel_size=1, stride=1, padding=0, bias=False),
101
+ nn.Sequential(norm_layer(self.key_channels), nn.ReLU(inplace=True)),
102
+ nn.Conv2d(in_channels=self.key_channels, out_channels=self.key_channels,
103
+ kernel_size=1, stride=1, padding=0, bias=False),
104
+ nn.Sequential(norm_layer(self.key_channels), nn.ReLU(inplace=True))
105
+ )
106
+ self.f_down = nn.Sequential(
107
+ nn.Conv2d(in_channels=self.in_channels, out_channels=self.key_channels,
108
+ kernel_size=1, stride=1, padding=0, bias=False),
109
+ nn.Sequential(norm_layer(self.key_channels), nn.ReLU(inplace=True))
110
+ )
111
+ self.f_up = nn.Sequential(
112
+ nn.Conv2d(in_channels=self.key_channels, out_channels=self.in_channels,
113
+ kernel_size=1, stride=1, padding=0, bias=False),
114
+ nn.Sequential(norm_layer(self.in_channels), nn.ReLU(inplace=True))
115
+ )
116
+
117
+ def forward(self, x, proxy):
118
+ batch_size, h, w = x.size(0), x.size(2), x.size(3)
119
+ if self.scale > 1:
120
+ x = self.pool(x)
121
+
122
+ query = self.f_pixel(x).view(batch_size, self.key_channels, -1)
123
+ query = query.permute(0, 2, 1)
124
+ key = self.f_object(proxy).view(batch_size, self.key_channels, -1)
125
+ value = self.f_down(proxy).view(batch_size, self.key_channels, -1)
126
+ value = value.permute(0, 2, 1)
127
+
128
+ sim_map = torch.matmul(query, key)
129
+ sim_map = (self.key_channels ** -.5) * sim_map
130
+ sim_map = F.softmax(sim_map, dim=-1)
131
+
132
+ # add bg context ...
133
+ context = torch.matmul(sim_map, value)
134
+ context = context.permute(0, 2, 1).contiguous()
135
+ context = context.view(batch_size, self.key_channels, *x.size()[2:])
136
+ context = self.f_up(context)
137
+ if self.scale > 1:
138
+ context = F.interpolate(input=context, size=(h, w),
139
+ mode='bilinear', align_corners=self.align_corners)
140
+
141
+ return context
inference/interact/fbrs/model/modeling/resnet.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from .resnetv1b import resnet34_v1b, resnet50_v1s, resnet101_v1s, resnet152_v1s
3
+
4
+
5
+ class ResNetBackbone(torch.nn.Module):
6
+ def __init__(self, backbone='resnet50', pretrained_base=True, dilated=True, **kwargs):
7
+ super(ResNetBackbone, self).__init__()
8
+
9
+ if backbone == 'resnet34':
10
+ pretrained = resnet34_v1b(pretrained=pretrained_base, dilated=dilated, **kwargs)
11
+ elif backbone == 'resnet50':
12
+ pretrained = resnet50_v1s(pretrained=pretrained_base, dilated=dilated, **kwargs)
13
+ elif backbone == 'resnet101':
14
+ pretrained = resnet101_v1s(pretrained=pretrained_base, dilated=dilated, **kwargs)
15
+ elif backbone == 'resnet152':
16
+ pretrained = resnet152_v1s(pretrained=pretrained_base, dilated=dilated, **kwargs)
17
+ else:
18
+ raise RuntimeError(f'unknown backbone: {backbone}')
19
+
20
+ self.conv1 = pretrained.conv1
21
+ self.bn1 = pretrained.bn1
22
+ self.relu = pretrained.relu
23
+ self.maxpool = pretrained.maxpool
24
+ self.layer1 = pretrained.layer1
25
+ self.layer2 = pretrained.layer2
26
+ self.layer3 = pretrained.layer3
27
+ self.layer4 = pretrained.layer4
28
+
29
+ def forward(self, x):
30
+ x = self.conv1(x)
31
+ x = self.bn1(x)
32
+ x = self.relu(x)
33
+ x = self.maxpool(x)
34
+ c1 = self.layer1(x)
35
+ c2 = self.layer2(c1)
36
+ c3 = self.layer3(c2)
37
+ c4 = self.layer4(c3)
38
+
39
+ return c1, c2, c3, c4
inference/interact/fbrs/model/modeling/resnetv1b.py ADDED
@@ -0,0 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ GLUON_RESNET_TORCH_HUB = 'rwightman/pytorch-pretrained-gluonresnet'
4
+
5
+
6
+ class BasicBlockV1b(nn.Module):
7
+ expansion = 1
8
+
9
+ def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None,
10
+ previous_dilation=1, norm_layer=nn.BatchNorm2d):
11
+ super(BasicBlockV1b, self).__init__()
12
+ self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride,
13
+ padding=dilation, dilation=dilation, bias=False)
14
+ self.bn1 = norm_layer(planes)
15
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1,
16
+ padding=previous_dilation, dilation=previous_dilation, bias=False)
17
+ self.bn2 = norm_layer(planes)
18
+
19
+ self.relu = nn.ReLU(inplace=True)
20
+ self.downsample = downsample
21
+ self.stride = stride
22
+
23
+ def forward(self, x):
24
+ residual = x
25
+
26
+ out = self.conv1(x)
27
+ out = self.bn1(out)
28
+ out = self.relu(out)
29
+
30
+ out = self.conv2(out)
31
+ out = self.bn2(out)
32
+
33
+ if self.downsample is not None:
34
+ residual = self.downsample(x)
35
+
36
+ out = out + residual
37
+ out = self.relu(out)
38
+
39
+ return out
40
+
41
+
42
+ class BottleneckV1b(nn.Module):
43
+ expansion = 4
44
+
45
+ def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None,
46
+ previous_dilation=1, norm_layer=nn.BatchNorm2d):
47
+ super(BottleneckV1b, self).__init__()
48
+ self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
49
+ self.bn1 = norm_layer(planes)
50
+
51
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
52
+ padding=dilation, dilation=dilation, bias=False)
53
+ self.bn2 = norm_layer(planes)
54
+
55
+ self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
56
+ self.bn3 = norm_layer(planes * self.expansion)
57
+
58
+ self.relu = nn.ReLU(inplace=True)
59
+ self.downsample = downsample
60
+ self.stride = stride
61
+
62
+ def forward(self, x):
63
+ residual = x
64
+
65
+ out = self.conv1(x)
66
+ out = self.bn1(out)
67
+ out = self.relu(out)
68
+
69
+ out = self.conv2(out)
70
+ out = self.bn2(out)
71
+ out = self.relu(out)
72
+
73
+ out = self.conv3(out)
74
+ out = self.bn3(out)
75
+
76
+ if self.downsample is not None:
77
+ residual = self.downsample(x)
78
+
79
+ out = out + residual
80
+ out = self.relu(out)
81
+
82
+ return out
83
+
84
+
85
+ class ResNetV1b(nn.Module):
86
+ """ Pre-trained ResNetV1b Model, which produces the strides of 8 featuremaps at conv5.
87
+
88
+ Parameters
89
+ ----------
90
+ block : Block
91
+ Class for the residual block. Options are BasicBlockV1, BottleneckV1.
92
+ layers : list of int
93
+ Numbers of layers in each block
94
+ classes : int, default 1000
95
+ Number of classification classes.
96
+ dilated : bool, default False
97
+ Applying dilation strategy to pretrained ResNet yielding a stride-8 model,
98
+ typically used in Semantic Segmentation.
99
+ norm_layer : object
100
+ Normalization layer used (default: :class:`nn.BatchNorm2d`)
101
+ deep_stem : bool, default False
102
+ Whether to replace the 7x7 conv1 with 3 3x3 convolution layers.
103
+ avg_down : bool, default False
104
+ Whether to use average pooling for projection skip connection between stages/downsample.
105
+ final_drop : float, default 0.0
106
+ Dropout ratio before the final classification layer.
107
+
108
+ Reference:
109
+ - He, Kaiming, et al. "Deep residual learning for image recognition."
110
+ Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
111
+
112
+ - Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions."
113
+ """
114
+ def __init__(self, block, layers, classes=1000, dilated=True, deep_stem=False, stem_width=32,
115
+ avg_down=False, final_drop=0.0, norm_layer=nn.BatchNorm2d):
116
+ self.inplanes = stem_width*2 if deep_stem else 64
117
+ super(ResNetV1b, self).__init__()
118
+ if not deep_stem:
119
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
120
+ else:
121
+ self.conv1 = nn.Sequential(
122
+ nn.Conv2d(3, stem_width, kernel_size=3, stride=2, padding=1, bias=False),
123
+ norm_layer(stem_width),
124
+ nn.ReLU(True),
125
+ nn.Conv2d(stem_width, stem_width, kernel_size=3, stride=1, padding=1, bias=False),
126
+ norm_layer(stem_width),
127
+ nn.ReLU(True),
128
+ nn.Conv2d(stem_width, 2*stem_width, kernel_size=3, stride=1, padding=1, bias=False)
129
+ )
130
+ self.bn1 = norm_layer(self.inplanes)
131
+ self.relu = nn.ReLU(True)
132
+ self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)
133
+ self.layer1 = self._make_layer(block, 64, layers[0], avg_down=avg_down,
134
+ norm_layer=norm_layer)
135
+ self.layer2 = self._make_layer(block, 128, layers[1], stride=2, avg_down=avg_down,
136
+ norm_layer=norm_layer)
137
+ if dilated:
138
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2,
139
+ avg_down=avg_down, norm_layer=norm_layer)
140
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4,
141
+ avg_down=avg_down, norm_layer=norm_layer)
142
+ else:
143
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
144
+ avg_down=avg_down, norm_layer=norm_layer)
145
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
146
+ avg_down=avg_down, norm_layer=norm_layer)
147
+ self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
148
+ self.drop = None
149
+ if final_drop > 0.0:
150
+ self.drop = nn.Dropout(final_drop)
151
+ self.fc = nn.Linear(512 * block.expansion, classes)
152
+
153
+ def _make_layer(self, block, planes, blocks, stride=1, dilation=1,
154
+ avg_down=False, norm_layer=nn.BatchNorm2d):
155
+ downsample = None
156
+ if stride != 1 or self.inplanes != planes * block.expansion:
157
+ downsample = []
158
+ if avg_down:
159
+ if dilation == 1:
160
+ downsample.append(
161
+ nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True, count_include_pad=False)
162
+ )
163
+ else:
164
+ downsample.append(
165
+ nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)
166
+ )
167
+ downsample.extend([
168
+ nn.Conv2d(self.inplanes, out_channels=planes * block.expansion,
169
+ kernel_size=1, stride=1, bias=False),
170
+ norm_layer(planes * block.expansion)
171
+ ])
172
+ downsample = nn.Sequential(*downsample)
173
+ else:
174
+ downsample = nn.Sequential(
175
+ nn.Conv2d(self.inplanes, out_channels=planes * block.expansion,
176
+ kernel_size=1, stride=stride, bias=False),
177
+ norm_layer(planes * block.expansion)
178
+ )
179
+
180
+ layers = []
181
+ if dilation in (1, 2):
182
+ layers.append(block(self.inplanes, planes, stride, dilation=1, downsample=downsample,
183
+ previous_dilation=dilation, norm_layer=norm_layer))
184
+ elif dilation == 4:
185
+ layers.append(block(self.inplanes, planes, stride, dilation=2, downsample=downsample,
186
+ previous_dilation=dilation, norm_layer=norm_layer))
187
+ else:
188
+ raise RuntimeError("=> unknown dilation size: {}".format(dilation))
189
+
190
+ self.inplanes = planes * block.expansion
191
+ for _ in range(1, blocks):
192
+ layers.append(block(self.inplanes, planes, dilation=dilation,
193
+ previous_dilation=dilation, norm_layer=norm_layer))
194
+
195
+ return nn.Sequential(*layers)
196
+
197
+ def forward(self, x):
198
+ x = self.conv1(x)
199
+ x = self.bn1(x)
200
+ x = self.relu(x)
201
+ x = self.maxpool(x)
202
+
203
+ x = self.layer1(x)
204
+ x = self.layer2(x)
205
+ x = self.layer3(x)
206
+ x = self.layer4(x)
207
+
208
+ x = self.avgpool(x)
209
+ x = x.view(x.size(0), -1)
210
+ if self.drop is not None:
211
+ x = self.drop(x)
212
+ x = self.fc(x)
213
+
214
+ return x
215
+
216
+
217
+ def _safe_state_dict_filtering(orig_dict, model_dict_keys):
218
+ filtered_orig_dict = {}
219
+ for k, v in orig_dict.items():
220
+ if k in model_dict_keys:
221
+ filtered_orig_dict[k] = v
222
+ else:
223
+ print(f"[ERROR] Failed to load <{k}> in backbone")
224
+ return filtered_orig_dict
225
+
226
+
227
+ def resnet34_v1b(pretrained=False, **kwargs):
228
+ model = ResNetV1b(BasicBlockV1b, [3, 4, 6, 3], **kwargs)
229
+ if pretrained:
230
+ model_dict = model.state_dict()
231
+ filtered_orig_dict = _safe_state_dict_filtering(
232
+ torch.hub.load(GLUON_RESNET_TORCH_HUB, 'gluon_resnet34_v1b', pretrained=True).state_dict(),
233
+ model_dict.keys()
234
+ )
235
+ model_dict.update(filtered_orig_dict)
236
+ model.load_state_dict(model_dict)
237
+ return model
238
+
239
+
240
+ def resnet50_v1s(pretrained=False, **kwargs):
241
+ model = ResNetV1b(BottleneckV1b, [3, 4, 6, 3], deep_stem=True, stem_width=64, **kwargs)
242
+ if pretrained:
243
+ model_dict = model.state_dict()
244
+ filtered_orig_dict = _safe_state_dict_filtering(
245
+ torch.hub.load(GLUON_RESNET_TORCH_HUB, 'gluon_resnet50_v1s', pretrained=True).state_dict(),
246
+ model_dict.keys()
247
+ )
248
+ model_dict.update(filtered_orig_dict)
249
+ model.load_state_dict(model_dict)
250
+ return model
251
+
252
+
253
+ def resnet101_v1s(pretrained=False, **kwargs):
254
+ model = ResNetV1b(BottleneckV1b, [3, 4, 23, 3], deep_stem=True, stem_width=64, **kwargs)
255
+ if pretrained:
256
+ model_dict = model.state_dict()
257
+ filtered_orig_dict = _safe_state_dict_filtering(
258
+ torch.hub.load(GLUON_RESNET_TORCH_HUB, 'gluon_resnet101_v1s', pretrained=True).state_dict(),
259
+ model_dict.keys()
260
+ )
261
+ model_dict.update(filtered_orig_dict)
262
+ model.load_state_dict(model_dict)
263
+ return model
264
+
265
+
266
+ def resnet152_v1s(pretrained=False, **kwargs):
267
+ model = ResNetV1b(BottleneckV1b, [3, 8, 36, 3], deep_stem=True, stem_width=64, **kwargs)
268
+ if pretrained:
269
+ model_dict = model.state_dict()
270
+ filtered_orig_dict = _safe_state_dict_filtering(
271
+ torch.hub.load(GLUON_RESNET_TORCH_HUB, 'gluon_resnet152_v1s', pretrained=True).state_dict(),
272
+ model_dict.keys()
273
+ )
274
+ model_dict.update(filtered_orig_dict)
275
+ model.load_state_dict(model_dict)
276
+ return model
inference/interact/fbrs/model/ops.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn as nn
3
+ import numpy as np
4
+
5
+ from . import initializer as initializer
6
+ from ..utils.cython import get_dist_maps
7
+
8
+
9
+ def select_activation_function(activation):
10
+ if isinstance(activation, str):
11
+ if activation.lower() == 'relu':
12
+ return nn.ReLU
13
+ elif activation.lower() == 'softplus':
14
+ return nn.Softplus
15
+ else:
16
+ raise ValueError(f"Unknown activation type {activation}")
17
+ elif isinstance(activation, nn.Module):
18
+ return activation
19
+ else:
20
+ raise ValueError(f"Unknown activation type {activation}")
21
+
22
+
23
+ class BilinearConvTranspose2d(nn.ConvTranspose2d):
24
+ def __init__(self, in_channels, out_channels, scale, groups=1):
25
+ kernel_size = 2 * scale - scale % 2
26
+ self.scale = scale
27
+
28
+ super().__init__(
29
+ in_channels, out_channels,
30
+ kernel_size=kernel_size,
31
+ stride=scale,
32
+ padding=1,
33
+ groups=groups,
34
+ bias=False)
35
+
36
+ self.apply(initializer.Bilinear(scale=scale, in_channels=in_channels, groups=groups))
37
+
38
+
39
+ class DistMaps(nn.Module):
40
+ def __init__(self, norm_radius, spatial_scale=1.0, cpu_mode=False):
41
+ super(DistMaps, self).__init__()
42
+ self.spatial_scale = spatial_scale
43
+ self.norm_radius = norm_radius
44
+ self.cpu_mode = cpu_mode
45
+
46
+ def get_coord_features(self, points, batchsize, rows, cols):
47
+ if self.cpu_mode:
48
+ coords = []
49
+ for i in range(batchsize):
50
+ norm_delimeter = self.spatial_scale * self.norm_radius
51
+ coords.append(get_dist_maps(points[i].cpu().float().numpy(), rows, cols,
52
+ norm_delimeter))
53
+ coords = torch.from_numpy(np.stack(coords, axis=0)).to(points.device).float()
54
+ else:
55
+ num_points = points.shape[1] // 2
56
+ points = points.view(-1, 2)
57
+ invalid_points = torch.max(points, dim=1, keepdim=False)[0] < 0
58
+ row_array = torch.arange(start=0, end=rows, step=1, dtype=torch.float32, device=points.device)
59
+ col_array = torch.arange(start=0, end=cols, step=1, dtype=torch.float32, device=points.device)
60
+
61
+ coord_rows, coord_cols = torch.meshgrid(row_array, col_array)
62
+ coords = torch.stack((coord_rows, coord_cols), dim=0).unsqueeze(0).repeat(points.size(0), 1, 1, 1)
63
+
64
+ add_xy = (points * self.spatial_scale).view(points.size(0), points.size(1), 1, 1)
65
+ coords.add_(-add_xy)
66
+ coords.div_(self.norm_radius * self.spatial_scale)
67
+ coords.mul_(coords)
68
+
69
+ coords[:, 0] += coords[:, 1]
70
+ coords = coords[:, :1]
71
+
72
+ coords[invalid_points, :, :, :] = 1e6
73
+
74
+ coords = coords.view(-1, num_points, 1, rows, cols)
75
+ coords = coords.min(dim=1)[0] # -> (bs * num_masks * 2) x 1 x h x w
76
+ coords = coords.view(-1, 2, rows, cols)
77
+
78
+ coords.sqrt_().mul_(2).tanh_()
79
+
80
+ return coords
81
+
82
+ def forward(self, x, coords):
83
+ return self.get_coord_features(coords, x.shape[0], x.shape[2], x.shape[3])
inference/interact/fbrs/model/syncbn/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2018 Tamaki Kojima
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
inference/interact/fbrs/model/syncbn/README.md ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pytorch-syncbn
2
+
3
+ Tamaki Kojima(tamakoji@gmail.com)
4
+
5
+ ## Announcement
6
+
7
+ **Pytorch 1.0 support**
8
+
9
+ ## Overview
10
+ This is alternative implementation of "Synchronized Multi-GPU Batch Normalization" which computes global stats across gpus instead of locally computed. SyncBN are getting important for those input image is large, and must use multi-gpu to increase the minibatch-size for the training.
11
+
12
+ The code was inspired by [Pytorch-Encoding](https://github.com/zhanghang1989/PyTorch-Encoding) and [Inplace-ABN](https://github.com/mapillary/inplace_abn)
13
+
14
+ ## Remarks
15
+ - Unlike [Pytorch-Encoding](https://github.com/zhanghang1989/PyTorch-Encoding), you don't need custom `nn.DataParallel`
16
+ - Unlike [Inplace-ABN](https://github.com/mapillary/inplace_abn), you can just replace your `nn.BatchNorm2d` to this module implementation, since it will not mark for inplace operation
17
+ - You can plug into arbitrary module written in PyTorch to enable Synchronized BatchNorm
18
+ - Backward computation is rewritten and tested against behavior of `nn.BatchNorm2d`
19
+
20
+ ## Requirements
21
+ For PyTorch, please refer to https://pytorch.org/
22
+
23
+ NOTE : The code is tested only with PyTorch v1.0.0, CUDA10/CuDNN7.4.2 on ubuntu18.04
24
+
25
+ It utilize Pytorch JIT mechanism to compile seamlessly, using ninja. Please install ninja-build before use.
26
+
27
+ ```
28
+ sudo apt-get install ninja-build
29
+ ```
30
+
31
+ Also install all dependencies for python. For pip, run:
32
+
33
+
34
+ ```
35
+ pip install -U -r requirements.txt
36
+ ```
37
+
38
+ ## Build
39
+
40
+ There is no need to build. just run and JIT will take care.
41
+ JIT and cpp extensions are supported after PyTorch0.4, however it is highly recommended to use PyTorch > 1.0 due to huge design changes.
42
+
43
+ ## Usage
44
+
45
+ Please refer to [`test.py`](./test.py) for testing the difference between `nn.BatchNorm2d` and `modules.nn.BatchNorm2d`
46
+
47
+ ```
48
+ import torch
49
+ from modules import nn as NN
50
+ num_gpu = torch.cuda.device_count()
51
+ model = nn.Sequential(
52
+ nn.Conv2d(3, 3, 1, 1, bias=False),
53
+ NN.BatchNorm2d(3),
54
+ nn.ReLU(inplace=True),
55
+ nn.Conv2d(3, 3, 1, 1, bias=False),
56
+ NN.BatchNorm2d(3),
57
+ ).cuda()
58
+ model = nn.DataParallel(model, device_ids=range(num_gpu))
59
+ x = torch.rand(num_gpu, 3, 2, 2).cuda()
60
+ z = model(x)
61
+ ```
62
+
63
+ ## Math
64
+
65
+ ### Forward
66
+ 1. compute <img src="https://latex.codecogs.com/gif.latex?\sum{x_i},\sum{x_i^2}"/> in each gpu
67
+ 2. gather all <img src="https://latex.codecogs.com/gif.latex?\sum{x_i},\sum{x_i^2}"/> from workers to master and compute <img src="https://latex.codecogs.com/gif.latex?\mu,\sigma"/> where
68
+
69
+ <img src="https://latex.codecogs.com/gif.latex?\mu=\frac{\sum{x_i}}{N}"/>
70
+
71
+ and
72
+
73
+ <img src="https://latex.codecogs.com/gif.latex?\sigma^2=\frac{\sum{x_i^2}-\mu\sum{x_i}}{N}"/></a>
74
+
75
+ and then above global stats to be shared to all gpus, update running_mean and running_var by moving average using global stats.
76
+
77
+ 3. forward batchnorm using global stats by
78
+
79
+ <img src="https://latex.codecogs.com/gif.latex?\hat{x_i}=\frac{x_i-\mu}{\sqrt{\sigma^2&plus;\epsilon}}"/>
80
+
81
+ and then
82
+
83
+ <img src="https://latex.codecogs.com/gif.latex?y_i=\gamma\cdot\hat{x_i}&plus;\beta"/>
84
+
85
+ where <img src="https://latex.codecogs.com/gif.latex?\gamma"/> is weight parameter and <img src="https://latex.codecogs.com/gif.latex?\beta"/> is bias parameter.
86
+
87
+ 4. save <img src="https://latex.codecogs.com/gif.latex?x,&space;\gamma\&space;\beta,&space;\mu,&space;\sigma^2"/> for backward
88
+
89
+ ### Backward
90
+
91
+ 1. Restore saved <img src="https://latex.codecogs.com/gif.latex?x,&space;\gamma\&space;\beta,&space;\mu,&space;\sigma^2"/>
92
+
93
+ 2. Compute below sums on each gpu
94
+
95
+ <img src="https://latex.codecogs.com/gif.latex?\sum_{i=1}^{N_j}(\frac{dJ}{dy_i})"/>
96
+
97
+ and
98
+
99
+ <img src="https://latex.codecogs.com/gif.latex?\sum_{i=1}^{N_j}(\frac{dJ}{dy_i}\cdot\hat{x_i})"/>
100
+
101
+ where <img src="https://latex.codecogs.com/gif.latex?j\in[0,1,....,num\_gpu]"/>
102
+
103
+ then gather them at master node to sum up global, and normalize with N where N is total number of elements for each channels. Global sums are then shared among all gpus.
104
+
105
+ 3. compute gradients using global stats
106
+
107
+ <img src="https://latex.codecogs.com/gif.latex?\frac{dJ}{dx_i},&space;\frac{dJ}{d\gamma},&space;\frac{dJ}{d\beta}&space;"/>
108
+
109
+ where
110
+
111
+ <img src="https://latex.codecogs.com/gif.latex?\frac{dJ}{d\gamma}=\sum_{i=1}^{N}(\frac{dJ}{dy_i}\cdot\hat{x_i})"/>
112
+
113
+ and
114
+
115
+ <img src="https://latex.codecogs.com/gif.latex?\frac{dJ}{d\beta}=\sum_{i=1}^{N}(\frac{dJ}{dy_i})"/>
116
+
117
+ and finally,
118
+
119
+ <img src="https://latex.codecogs.com/gif.latex?\frac{dJ}{dx_i}=\frac{dJ}{d\hat{x_i}}\frac{d\hat{x_i}}{dx_i}+\frac{dJ}{d\mu_i}\frac{d\mu_i}{dx_i}+\frac{dJ}{d\sigma^2_i}\frac{d\sigma^2_i}{dx_i}"/>
120
+
121
+ <img src="https://latex.codecogs.com/gif.latex?=\frac{1}{N\sqrt{(\sigma^2+\epsilon)}}(N\frac{dJ}{d\hat{x_i}}-\sum_{j=1}^{N}(\frac{dJ}{d\hat{x_j}})-\hat{x_i}\sum_{j=1}^{N}(\frac{dJ}{d\hat{x_j}}\hat{x_j}))"/>
122
+
123
+ <img src="https://latex.codecogs.com/gif.latex?=\frac{\gamma}{N\sqrt{(\sigma^2+\epsilon)}}(N\frac{dJ}{dy_i}-\sum_{j=1}^{N}(\frac{dJ}{dy_j})-\hat{x_i}\sum_{j=1}^{N}(\frac{dJ}{dy_j}\hat{x_j}))"/>
124
+
125
+ Note that in the implementation, normalization with N is performed at step (2) and above equation and implementation is not exactly the same, but mathematically is same.
126
+
127
+ You can go deeper on above explanation at [Kevin Zakka's Blog](https://kevinzakka.github.io/2016/09/14/batch_normalization/)