test33 / app.py
yxmiler's picture
Update app.py
465d40a verified
import json
import os
import time
import uuid
import hashlib
import base64
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor
import requests
from flask import Flask, request, jsonify, Response, stream_with_context
from flask_cors import CORS
from dotenv import load_dotenv
# 加载环境变量
load_dotenv()
# ==================== 配置管理类 ====================
class Config:
"""全局配置管理"""
# 服务器配置
PORT = int(os.getenv('PORT', 7680))
MAX_WORKERS = int(os.getenv('MAX_WORKERS', 20))
# 认证配置
API_KEY = os.getenv('API_KEY', 'sk-123456')
RAYCAST_TOKEN = os.getenv('RAYCAST_TOKEN', None)
# Raycast API 配置
RAYCAST_BASE_URL = 'https://backend.raycast.com/api/v1'
RAYCAST_CHAT_URL = f'{RAYCAST_BASE_URL}/ai/chat_completions'
RAYCAST_FILES_URL = f'{RAYCAST_BASE_URL}/ai/files/'
# Raycast 请求头配置
RAYCAST_HEADERS = {
'Content-Type': 'application/json',
'accept-language': 'zh-CN,zh-Hans;q=0.9',
'x-raycast-deviceid': 'c86ec3d4b2c9a66de6d1a19fc5bada76fc15af8f117dc1b69ba993391f0ad531',
'accept-encoding': 'gzip, deflate, br',
'user-agent': 'Raycast/1.0.4/747 (iOS Version 18.2.1 (Build 22C161))',
'Cookie': '__raycast_session=4eb4e28abc9196e140b1980c79b75cdc'
}
# 系统偏好设置
DEFAULT_SYSTEM_INSTRUCTIONS = f"""<user-preferences>
The user has the following system preferences:
- Locale: en-CN
- Timezone: Asia/Shanghai
- Current Date: {datetime.now().strftime('%Y-%m-%d')}
- Unit Currency: ¥
- Unit Temperature: °C
- Unit Length: m
- Unit Mass: kg
- Decimal Separator: .
- Grouping Separator: ,
Use the system preferences to format your answers accordingly.
</user-preferences>"""
@classmethod
def get_raycast_headers(cls, include_auth=True):
"""获取Raycast请求头"""
headers = cls.RAYCAST_HEADERS.copy()
if include_auth:
headers['authorization'] = f'Bearer {cls.RAYCAST_TOKEN}'
return headers
# 配置Flask应用
app = Flask(__name__)
CORS(app)
# 创建线程池
executor = ThreadPoolExecutor(max_workers=Config.MAX_WORKERS)
# ==================== 认证装饰器 ====================
def require_auth(f):
"""认证装饰器"""
def decorated_function(*args, **kwargs):
auth_header = request.headers.get('Authorization')
if not auth_header:
return jsonify({
'error': {
'message': '缺少认证头',
'type': 'authentication_error',
'code': 'missing_authorization'
}
}), 401
# 检查Bearer token格式
if not auth_header.startswith('Bearer '):
return jsonify({
'error': {
'message': '认证格式错误',
'type': 'authentication_error',
'code': 'invalid_authorization_format'
}
}), 401
token = auth_header[7:]
if token != Config.API_KEY:
return jsonify({
'error': {
'message': '认证失败',
'type': 'authentication_error',
'code': 'invalid_api_key'
}
}), 401
return f(*args, **kwargs)
decorated_function.__name__ = f.__name__
return decorated_function
# ==================== 工具类 ====================
class UtilsHelper:
@staticmethod
def generate_uuid():
return str(uuid.uuid4())
@staticmethod
def get_current_timestamp():
return int(time.time())
@staticmethod
def generate_md5(data):
if isinstance(data, str):
data = data.encode('utf-8')
return base64.b64encode(hashlib.md5(data).digest()).decode('utf-8')
@staticmethod
def is_search_model(model):
return model.endswith('-search')
@staticmethod
def get_base_model(model):
return model[:-7] if model.endswith('-search') else model
# ==================== 模型映射类 ====================
class ModelMapper:
BASE_MODELS = {
"ray1": "raycast",
"ray1-mini": "raycast",
"gpt-4.1": "openai",
"gpt-4.1-mini": "openai",
"gpt-4.1-nano": "openai",
"gpt-4": "openai",
"gpt-4-turbo": "openai",
"gpt-4o": "openai",
"gpt-4o-mini": "openai",
"o3": "openai_o1",
"o4-mini": "openai_o1",
"o1-mini": "openai_o1",
"o1-2024-12-17": "openai_o1",
"o3-mini": "openai_o1",
"claude-3-5-haiku-latest": "anthropic",
"claude-3-5-sonnet-latest": "anthropic",
"claude-3-7-sonnet-latest": "anthropic",
"claude-3-7-sonnet-latest-reasoning": "anthropic",
"claude-3-opus-20240229": "anthropic",
"claude-sonnet-4-20250514": "anthropic",
"claude-opus-4-20250514": "anthropic",
"claude-sonnet-4-20250514-reasoning": "anthropic",
"claude-opus-4-20250514-reasoning": "anthropic",
"sonar": "perplexity",
"sonar-pro": "perplexity",
"sonar-reasoning": "perplexity",
"sonar-reasoning-pro": "perplexity",
"meta-llama/llama-4-scout-17b-16e-instruct": "groq",
"llama-3.3-70b-versatile": "groq",
"llama-3.1-8b-instant": "groq",
"llama3-70b-8192": "groq",
"meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo": "together",
"open-mistral-nemo": "mistral",
"mistral-large-latest": "mistral",
"mistral-medium-latest": "mistral",
"mistral-small-latest": "mistral",
"codestral-latest": "mistral",
"deepseek-r1-distill-llama-70b": "groq",
"gemini-2.5-pro-preview-06-05": "google",
"gemini-1.5-flash": "google",
"gemini-2.5-flash-preview-04-17": "google",
"gemini-2.0-flash": "google",
"gemini-2.0-flash-thinking-exp-01-21": "google",
"deepseek-ai/DeepSeek-R1": "together",
"deepseek-ai/DeepSeek-V3": "together",
"grok-3-fast-beta": "xai",
"grok-3-mini-fast-beta": "xai",
"grok-2-latest": "xai"
}
# 生成完整的模型映射表(包含搜索版本)
@classmethod
def get_model_map(cls):
model_map = cls.BASE_MODELS.copy()
# 为每个基础模型添加带搜索功能的版本
for model in cls.BASE_MODELS.keys():
model_map[f"{model}-search"] = cls.BASE_MODELS[model]
return model_map
@classmethod
def get_provider(cls, model):
base_model = UtilsHelper.get_base_model(model)
return cls.get_model_map().get(base_model, 'google')
@classmethod
def get_actual_model(cls, model):
base_model = UtilsHelper.get_base_model(model)
provider = cls.get_provider(model)
if provider == 'raycast':
return 'gemini-2.5-flash-preview-04-17'
else:
return base_model
@classmethod
def get_all_models(cls):
return list(cls.get_model_map().keys())
# ==================== 工具功能类 ====================
class ToolsManager:
@staticmethod
def get_tools(use_search=False):
if not use_search:
return []
return [
{
"name": "search_images",
"type": "remote_tool"
},
{
"name": "web_search",
"type": "remote_tool"
}
]
# ==================== 文件上传类 ====================
class FileUploader:
@classmethod
def upload_file(cls, file_data):
try:
filename = file_data['filename']
content = file_data['content']
content_type = file_data['contentType']
buffer = base64.b64decode(content)
byte_size = len(buffer)
checksum = UtilsHelper.generate_md5(buffer)
# 创建文件元数据
create_file_payload = {
'blob': {
'byte_size': byte_size,
'checksum': checksum,
'content_type': content_type,
'filename': filename
}
}
headers = Config.get_raycast_headers()
headers['x-raycast-timestamp'] = str(UtilsHelper.get_current_timestamp())
headers['x-request-id'] = UtilsHelper.generate_uuid().upper()
create_response = requests.post(
Config.RAYCAST_FILES_URL,
headers=headers,
json=create_file_payload,
timeout=30
)
if not create_response.ok:
raise Exception(f'文件元数据创建失败: {create_response.status_code}')
create_result = create_response.json()
upload_url = create_result['direct_upload']['url']
file_id = create_result['id']
# 上传文件
upload_headers = {
'Content-Type': content_type,
'Content-MD5': checksum,
'Content-Length': str(byte_size),
'Content-Disposition': f'inline; filename="{filename}"; filename*=UTF-8\'\'{filename}',
'Upload-Complete': '?1'
}
upload_response = requests.put(
upload_url,
headers=upload_headers,
data=buffer,
timeout=60
)
if not upload_response.ok:
raise Exception(f'文件上传失败: {upload_response.status_code}')
return {
'id': file_id,
'type': 'file'
}
except Exception as error:
print(f'文件上传错误: {error}')
raise error
@classmethod
def extract_files_from_openai(cls, messages):
files = []
for message in messages:
if message.get('role') == 'user' and isinstance(message.get('content'), list):
for content in message['content']:
if content.get('type') == 'image_url' and content.get('image_url'):
url = content['image_url']['url']
if url.startswith('data:'):
# 处理base64图片
header, data = url.split(',', 1)
mime_match = header.split(':')[1].split(';')[0] if ':' in header else 'image/jpeg'
content_type = mime_match
files.append({
'filename': f'image_{UtilsHelper.generate_uuid()}.{content_type.split("/")[1]}',
'content': data,
'contentType': content_type
})
return files
# ==================== 转换类 ====================
class MessageConverter:
@classmethod
def merge_consecutive_messages(cls, messages):
"""合并连续相同角色的消息"""
if not messages:
return messages
merged_messages = []
current_message = None
for message in messages:
role = message.get('role')
content = message.get('content', '')
# 处理content为list的情况
if isinstance(content, list):
content = ''.join([
c.get('text', '') for c in content
if c.get('type') == 'text'
])
if current_message is None:
# 第一条消息
current_message = {
'role': role,
'content': content
}
elif current_message['role'] == role:
# 相同角色,合并内容
current_message['content'] += '\n' + content
else:
# 不同角色,保存当前消息并开始新消息
merged_messages.append(current_message)
current_message = {
'role': role,
'content': content
}
# 添加最后一条消息
if current_message:
merged_messages.append(current_message)
return merged_messages
@classmethod
def process_system_messages(cls, messages):
# 先合并连续相同角色的消息
merged_messages = cls.merge_consecutive_messages(messages)
processed_messages = []
additional_system_instructions = ''
system_collection_stopped = False
for message in merged_messages:
if message.get('role') == 'system':
if not system_collection_stopped:
# 连续的 system 消息收集到 additional_system_instructions
if additional_system_instructions:
additional_system_instructions += '\n' + message['content']
else:
additional_system_instructions = message['content']
else:
# 后续的 system 消息转换为 user 消息
processed_messages.append({
'author': 'user',
'content': {
'references': [],
'text': message['content']
}
})
else:
# 遇到非 system 消息,停止收集 system 消息
system_collection_stopped = True
processed_message = {
'author': 'user' if message.get('role') == 'user' else 'assistant',
'content': {
'references': [],
'text': message['content']
}
}
processed_messages.append(processed_message)
return processed_messages, additional_system_instructions
@classmethod
def convert_to_raycast_format(cls, openai_request):
processed_messages, additional_system_instructions = cls.process_system_messages(
openai_request['messages']
)
# 处理文件上传
files = FileUploader.extract_files_from_openai(openai_request['messages'])
attachments = []
for file in files:
try:
uploaded_file = FileUploader.upload_file(file)
attachments.append(uploaded_file)
except Exception as error:
print(f'文件上传失败: {error}')
# 如果有附件,添加到最后一个用户消息中
if attachments and processed_messages:
last_message = processed_messages[-1]
if last_message['author'] == 'user':
last_message['content']['attachments'] = attachments
actual_model = ModelMapper.get_actual_model(openai_request['model'])
provider = ModelMapper.get_provider(openai_request['model'])
use_search = UtilsHelper.is_search_model(openai_request['model'])
raycast_request = {
'additional_system_instructions': additional_system_instructions or Config.DEFAULT_SYSTEM_INSTRUCTIONS,
'debug': False,
'locale': 'en_CN',
'message_id': UtilsHelper.generate_uuid(),
'messages': processed_messages,
'model': actual_model,
'provider': 'google' if provider == 'raycast' else provider,
'source': 'ai_chat',
'tools': ToolsManager.get_tools(use_search)
}
return raycast_request
# ==================== 响应处理类 ====================
class ResponseProcessor:
def __init__(self):
self.is_thinking = False
self.thinking_content = ''
def process_raycast_chunk(self, chunk):
content = ''
# 处理思考内容
if chunk.get('reasoning'):
if not self.is_thinking:
# 开始思考
self.is_thinking = True
content += '<think>'
content += chunk['reasoning']
self.thinking_content += chunk['reasoning']
# 处理普通文本内容
if chunk.get('text'):
if self.is_thinking:
# 结束思考
content += '</think>'
self.is_thinking = False
self.thinking_content = ''
content += chunk['text']
return content
def convert_to_openai_format(self, raycast_chunk, model, is_stream=False):
content = self.process_raycast_chunk(raycast_chunk)
if is_stream:
return {
'id': 'chatcmpl-' + UtilsHelper.generate_uuid(),
'object': 'chat.completion.chunk',
'created': UtilsHelper.get_current_timestamp(),
'model': model,
'choices': [{
'index': 0,
'delta': {
'content': content
},
'finish_reason': None
}]
}
else:
return {
'id': 'chatcmpl-' + UtilsHelper.generate_uuid(),
'object': 'chat.completion',
'created': UtilsHelper.get_current_timestamp(),
'model': model,
'choices': [{
'index': 0,
'message': {
'role': 'assistant',
'content': content
},
'finish_reason': 'stop'
}],
'usage': {
'prompt_tokens': 0,
'completion_tokens': 0,
'total_tokens': 0
}
}
def finish_thinking(self):
if self.is_thinking:
self.is_thinking = False
return '</think>'
return ''
# ==================== API服务类 ====================
class RaycastAPIService:
@classmethod
def send_request(cls, raycast_request):
headers = Config.get_raycast_headers()
headers['x-raycast-timestamp'] = str(UtilsHelper.get_current_timestamp())
response = requests.post(
Config.RAYCAST_CHAT_URL,
headers=headers,
json=raycast_request,
stream=True,
timeout=120
)
if not response.ok:
error_text = response.text
print(f'Raycast API 错误响应: {error_text}')
raise Exception(f'Raycast API 响应错误: {response.status_code} {response.reason}')
return response
# ==================== 处理函数 ====================
def handle_chat_completion(request_data):
try:
# 转换请求格式
raycast_request = MessageConverter.convert_to_raycast_format(request_data)
# 发送请求到 Raycast
response = RaycastAPIService.send_request(raycast_request)
return response, request_data
except Exception as error:
print(f'代理错误: {error}')
raise error
def process_stream_response(response, request_data):
processor = ResponseProcessor()
def generate():
try:
buffer = ''
for chunk in response.iter_lines():
chunk = chunk.decode("utf-8").strip()
if chunk:
buffer += chunk + '\n'
lines = buffer.split('\n')
buffer = lines.pop() if lines else ''
for line in lines:
if line.strip():
try:
if line.startswith('data: '):
data = line[6:]
if data == '[DONE]':
# 检查是否需要关闭thinking标签
finish_content = processor.finish_thinking()
if finish_content:
finish_response = processor.convert_to_openai_format(
{'text': finish_content}, request_data['model'], True
)
yield f"data: {json.dumps(finish_response)}\n\n"
yield 'data: [DONE]\n\n'
return
parsed = json.loads(data)
openai_response = processor.convert_to_openai_format(
parsed, request_data['model'], True
)
yield f"data: {json.dumps(openai_response)}\n\n"
except Exception as err:
print(f'解析流式响应错误: {err}, 原始行: {line}')
yield 'data: [DONE]\n\n'
except Exception as err:
print(f'流式响应错误: {err}')
yield f'data: {json.dumps({"error": "流式响应处理错误"})}\n\n'
finally:
response.close()
return generate()
def process_non_stream_response(response, request_data):
processor = ResponseProcessor()
full_content = ''
try:
buffer = ''
for chunk in response.iter_lines():
chunk = chunk.decode("utf-8").strip()
if chunk:
buffer += chunk + '\n'
lines = buffer.split('\n')
buffer = lines.pop() if lines else ''
for line in lines:
if line.strip():
try:
if line.startswith('data: '):
data = line[6:]
if data == '[DONE]':
break # 结束处理
parsed = json.loads(data)
content = processor.process_raycast_chunk(parsed)
full_content += content
except Exception as err:
print(f'解析非流式响应错误: {err}, 原始行: {line}')
# 确保thinking标签正确关闭
finish_content = processor.finish_thinking()
full_content += finish_content
return {
'id': 'chatcmpl-' + UtilsHelper.generate_uuid(),
'object': 'chat.completion',
'created': UtilsHelper.get_current_timestamp(),
'model': request_data['model'],
'choices': [{
'index': 0,
'message': {
'role': 'assistant',
'content': full_content
},
'finish_reason': 'stop'
}],
'usage': {
'prompt_tokens': 0,
'completion_tokens': 0,
'total_tokens': 0
}
}
except Exception as err:
print(f'非流式响应错误: {err}')
raise err
finally:
response.close()
# ==================== 路由处理 ====================
@app.route('/v1/chat/completions', methods=['POST'])
@require_auth
def chat_completions():
try:
request_data = request.get_json()
if not request_data:
return jsonify({
'error': {
'message': '请求数据为空',
'type': 'invalid_request',
'code': 'invalid_request'
}
}), 400
is_stream = request_data.get('stream', False)
# 在线程池中处理请求
future = executor.submit(handle_chat_completion, request_data)
response, req_data = future.result()
if is_stream:
return Response(
stream_with_context(process_stream_response(response, req_data)),
content_type='text/event-stream',
headers={
'Cache-Control': 'no-cache',
'Connection': 'keep-alive',
'Access-Control-Allow-Origin': '*'
}
)
else:
future = executor.submit(process_non_stream_response, response, req_data)
result = future.result()
return jsonify(result)
except Exception as error:
return jsonify({
'error': {
'message': str(error) or '内部服务器错误',
'type': 'internal_error',
'code': 'internal_error'
}
}), 500
@app.route('/v1/models', methods=['GET'])
def list_models():
models = [
{
'id': model,
'object': 'model',
'created': UtilsHelper.get_current_timestamp(),
'owned_by': 'raycast-proxy'
}
for model in ModelMapper.get_all_models()
]
return jsonify({
'object': 'list',
'data': models
})
@app.route('/health', methods=['GET'])
def health_check():
return jsonify({
'status': 'ok',
'timestamp': datetime.now().isoformat(),
'models_count': len(ModelMapper.get_all_models()),
'config': {
'port': Config.PORT,
'max_workers': Config.MAX_WORKERS,
'auth_required': bool(Config.API_KEY)
}
})
@app.route('/', methods=['OPTIONS'])
@app.route('/v1/chat/completions', methods=['OPTIONS'])
@app.route('/v1/models', methods=['OPTIONS'])
def handle_options():
return '', 200
if __name__ == '__main__':
print(f'🚀 Raycast 代理服务器运行在端口 {Config.PORT}')
print(f'🔗 OpenAI 兼容端点: http://localhost:{Config.PORT}/v1/chat/completions')
print(f'📜 模型列表: http://localhost:{Config.PORT}/v1/models')
print(f'⚡ 最大工作线程数: {Config.MAX_WORKERS}')
# 使用支持多线程的WSGI服务器
app.run(
host='0.0.0.0',
port=Config.PORT,
debug=False,
threaded=True,
processes=1
)