|
import gradio as gr |
|
from gpt4all import GPT4All |
|
from urllib.request import urlopen |
|
import json |
|
import time |
|
from load_llms import model_choices, llm_intro, load_model |
|
|
|
|
|
|
|
def generate_response(model_name, message, chat_history): |
|
model = load_model(model_name) |
|
chat_history = [] |
|
if len(chat_history) > 0: |
|
past_chat = ", ".join(chat_history) |
|
input_text = past_chat + " " + message |
|
else: |
|
input_text = message |
|
response = model.generate(input_text, max_tokens=100) |
|
chat_history.append((input_text, response)) |
|
return "", chat_history |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# GPT4All Chatbot") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
model_dropdown = gr.Dropdown( |
|
choices=model_choices(), |
|
multiselect=False, |
|
type="value", |
|
value="orca-mini-3b-gguf2-q4_0.gguf", |
|
label="LLMs to choose from" |
|
) |
|
explanation = gr.Textbox(label="Model Description", interactive=False, value=llm_intro("orca-mini-3b-gguf2-q4_0.gguf")) |
|
|
|
|
|
model_dropdown.change(fn=llm_intro, inputs=model_dropdown, outputs=explanation) |
|
|
|
with gr.Column(scale=4): |
|
chatbot = gr.Chatbot(label="Chatroom", value=[(None, "How may I help you today?")]) |
|
|
|
message = gr.Textbox(label="Message") |
|
|
|
message.submit(generate_response, inputs=[model_dropdown, message, chatbot], outputs=[message, chatbot]) |
|
|
|
|
|
demo.launch() |
|
|
|
|