elia / lib /multimodal_segmentation.py
yxchng
add files
a166479
import torch
import torch.nn as nn
from .mask_predictor import SimpleDecoding
#from .backbone import MultiModalSwinTransformer
from .multimodal_swin import MultiModalSwin
from ._utils import LAVT, LAVTOne
__all__ = ['lavt', 'lavt_one']
# LAVT
def _segm_lavt(pretrained, args):
# initialize the SwinTransformer backbone with the specified version
if args.swin_type == 'tiny':
embed_dim = 96
depths = [2, 2, 6, 2]
num_heads = [3, 6, 12, 24]
elif args.swin_type == 'small':
embed_dim = 96
depths = [2, 2, 18, 2]
num_heads = [3, 6, 12, 24]
elif args.swin_type == 'base':
embed_dim = 128
depths = [2, 2, 18, 2]
num_heads = [4, 8, 16, 32]
elif args.swin_type == 'large':
embed_dim = 192
depths = [2, 2, 18, 2]
num_heads = [6, 12, 24, 48]
else:
assert False
# args.window12 added for test.py because state_dict is loaded after model initialization
if 'window12' in pretrained or args.window12:
print('Window size 12!')
window_size = 12
else:
window_size = 7
if args.mha:
mha = args.mha.split('-') # if non-empty, then ['a', 'b', 'c', 'd']
mha = [int(a) for a in mha]
else:
mha = [1, 1, 1, 1]
out_indices = (0, 1, 2, 3)
backbone = MultiModalSwin(embed_dim=embed_dim, depths=depths, num_heads=num_heads,
window_size=window_size,
ape=False, drop_path_rate=0.3, patch_norm=True,
out_indices=out_indices,
use_checkpoint=False, num_heads_fusion=mha,
fusion_drop=args.fusion_drop
)
if pretrained:
print('Initializing Multi-modal Swin Transformer weights from ' + pretrained)
backbone.init_weights(pretrained=pretrained)
else:
print('Randomly initialize Multi-modal Swin Transformer weights.')
backbone.init_weights()
model_map = [SimpleDecoding, LAVT]
classifier = model_map[0](8*embed_dim)
base_model = model_map[1]
model = base_model(backbone, classifier)
return model
def _load_model_lavt(pretrained, args):
model = _segm_lavt(pretrained, args)
return model
def lavt(pretrained='', args=None):
return _load_model_lavt(pretrained, args)
###############################################
# LAVT One: put BERT inside the overall model #
###############################################
def _segm_lavt_one(pretrained, args):
# initialize the SwinTransformer backbone with the specified version
if args.swin_type == 'tiny':
embed_dim = 96
depths = [2, 2, 6, 2]
num_heads = [3, 6, 12, 24]
elif args.swin_type == 'small':
embed_dim = 96
depths = [2, 2, 18, 2]
num_heads = [3, 6, 12, 24]
elif args.swin_type == 'base':
embed_dim = 128
depths = [2, 2, 18, 2]
num_heads = [4, 8, 16, 32]
elif args.swin_type == 'large':
embed_dim = 192
depths = [2, 2, 18, 2]
num_heads = [6, 12, 24, 48]
else:
assert False
# args.window12 added for test.py because state_dict is loaded after model initialization
if 'window12' in pretrained or args.window12:
print('Window size 12!')
window_size = 12
else:
window_size = 7
if args.mha:
mha = args.mha.split('-') # if non-empty, then ['a', 'b', 'c', 'd']
mha = [int(a) for a in mha]
else:
mha = [1, 1, 1, 1]
out_indices = (0, 1, 2, 3)
backbone = MultiModalSwinTransformer(embed_dim=embed_dim, depths=depths, num_heads=num_heads,
window_size=window_size,
ape=False, drop_path_rate=0.3, patch_norm=True,
out_indices=out_indices,
use_checkpoint=False, num_heads_fusion=mha,
fusion_drop=args.fusion_drop
)
if pretrained:
print('Initializing Multi-modal Swin Transformer weights from ' + pretrained)
backbone.init_weights(pretrained=pretrained)
else:
print('Randomly initialize Multi-modal Swin Transformer weights.')
backbone.init_weights()
model_map = [SimpleDecoding, LAVTOne]
classifier = model_map[0](8*embed_dim)
base_model = model_map[1]
model = base_model(backbone, classifier, args)
return model
def _load_model_lavt_one(pretrained, args):
model = _segm_lavt_one(pretrained, args)
return model
def lavt_one(pretrained='', args=None):
return _load_model_lavt_one(pretrained, args)