elia / transforms.py
yxchng
add files
a166479
raw
history blame
3.92 kB
import numpy as np
from PIL import Image
import random
import torch
from torchvision import transforms as T
from torchvision.transforms import functional as F
def pad_if_smaller(img, size, fill=0):
min_size = min(img.size)
if min_size < size:
ow, oh = img.size
padh = size - oh if oh < size else 0
padw = size - ow if ow < size else 0
img = F.pad(img, (0, 0, padw, padh), fill=fill)
return img
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, image, target):
for t in self.transforms:
image, target = t(image, target)
return image, target
class Resize(object):
def __init__(self, h, w):
self.h = h
self.w = w
def __call__(self, image, target):
image = F.resize(image, (self.h, self.w))
# If size is a sequence like (h, w), the output size will be matched to this.
# If size is an int, the smaller edge of the image will be matched to this number maintaining the aspect ratio
target = F.resize(target, (self.h, self.w), interpolation=Image.NEAREST)
return image, target
class RandomResize(object):
def __init__(self, min_size, max_size=None):
self.min_size = min_size
if max_size is None:
max_size = min_size
self.max_size = max_size
def __call__(self, image, target):
size = random.randint(self.min_size, self.max_size) # Return a random integer N such that a <= N <= b. Alias for randrange(a, b+1)
image = F.resize(image, size)
# If size is a sequence like (h, w), the output size will be matched to this.
# If size is an int, the smaller edge of the image will be matched to this number maintaining the aspect ratio
target = F.resize(target, size, interpolation=Image.NEAREST)
return image, target
class RandomHorizontalFlip(object):
def __init__(self, flip_prob):
self.flip_prob = flip_prob
def __call__(self, image, target):
if random.random() < self.flip_prob:
image = F.hflip(image)
target = F.hflip(target)
return image, target
class RandomCrop(object):
def __init__(self, size):
self.size = size
def __call__(self, image, target):
image = pad_if_smaller(image, self.size)
target = pad_if_smaller(target, self.size, fill=255)
crop_params = T.RandomCrop.get_params(image, (self.size, self.size))
image = F.crop(image, *crop_params)
target = F.crop(target, *crop_params)
return image, target
class CenterCrop(object):
def __init__(self, size):
self.size = size
def __call__(self, image, target):
image = F.center_crop(image, self.size)
target = F.center_crop(target, self.size)
return image, target
class ToTensor(object):
def __call__(self, image, target):
image = F.to_tensor(image)
target = torch.as_tensor(np.asarray(target).copy(), dtype=torch.int64)
return image, target
class RandomAffine(object):
def __init__(self, angle, translate, scale, shear, resample=0, fillcolor=None):
self.angle = angle
self.translate = translate
self.scale = scale
self.shear = shear
self.resample = resample
self.fillcolor = fillcolor
def __call__(self, image, target):
affine_params = T.RandomAffine.get_params(self.angle, self.translate, self.scale, self.shear, image.size)
image = F.affine(image, *affine_params)
target = F.affine(target, *affine_params)
return image, target
class Normalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, image, target):
image = F.normalize(image, mean=self.mean, std=self.std)
return image, target