|
import datetime |
|
import os |
|
import time |
|
|
|
import torch |
|
import torch.utils.data |
|
from torch import nn |
|
|
|
from bert.modeling_bert import BertModel |
|
import torchvision |
|
|
|
from lib import segmentation |
|
import transforms as T |
|
import utils |
|
|
|
import numpy as np |
|
from PIL import Image |
|
import torch.nn.functional as F |
|
|
|
|
|
def get_dataset(image_set, transform, args): |
|
from data.dataset_refer_bert import ReferDataset |
|
ds = ReferDataset(args, |
|
split=image_set, |
|
image_transforms=transform, |
|
target_transforms=None, |
|
eval_mode=True |
|
) |
|
num_classes = 2 |
|
return ds, num_classes |
|
|
|
|
|
def evaluate(model, data_loader, bert_model, device): |
|
model.eval() |
|
metric_logger = utils.MetricLogger(delimiter=" ") |
|
|
|
|
|
cum_I, cum_U = 0, 0 |
|
eval_seg_iou_list = [.5, .6, .7, .8, .9] |
|
seg_correct = np.zeros(len(eval_seg_iou_list), dtype=np.int32) |
|
seg_total = 0 |
|
mean_IoU = [] |
|
header = 'Test:' |
|
|
|
with torch.no_grad(): |
|
for data in metric_logger.log_every(data_loader, 100, header): |
|
image, target, sentences, attentions = data |
|
image, target, sentences, attentions = image.to(device), target.to(device), \ |
|
sentences.to(device), attentions.to(device) |
|
sentences = sentences.squeeze(1) |
|
attentions = attentions.squeeze(1) |
|
target = target.cpu().data.numpy() |
|
for j in range(sentences.size(-1)): |
|
if bert_model is not None: |
|
last_hidden_states = bert_model(sentences[:, :, j], attention_mask=attentions[:, :, j])[0] |
|
embedding = last_hidden_states.permute(0, 2, 1) |
|
output = model(image, embedding, l_mask=attentions[:, :, j].unsqueeze(-1)) |
|
else: |
|
output = model(image, sentences[:, :, j], l_mask=attentions[:, :, j]) |
|
|
|
output = output.cpu() |
|
output_mask = output.argmax(1).data.numpy() |
|
I, U = computeIoU(output_mask, target) |
|
if U == 0: |
|
this_iou = 0.0 |
|
else: |
|
this_iou = I*1.0/U |
|
mean_IoU.append(this_iou) |
|
cum_I += I |
|
cum_U += U |
|
for n_eval_iou in range(len(eval_seg_iou_list)): |
|
eval_seg_iou = eval_seg_iou_list[n_eval_iou] |
|
seg_correct[n_eval_iou] += (this_iou >= eval_seg_iou) |
|
seg_total += 1 |
|
|
|
del image, target, sentences, attentions, output, output_mask |
|
if bert_model is not None: |
|
del last_hidden_states, embedding |
|
|
|
mean_IoU = np.array(mean_IoU) |
|
mIoU = np.mean(mean_IoU) |
|
print('Final results:') |
|
print('Mean IoU is %.2f\n' % (mIoU*100.)) |
|
results_str = '' |
|
for n_eval_iou in range(len(eval_seg_iou_list)): |
|
results_str += ' precision@%s = %.2f\n' % \ |
|
(str(eval_seg_iou_list[n_eval_iou]), seg_correct[n_eval_iou] * 100. / seg_total) |
|
results_str += ' overall IoU = %.2f\n' % (cum_I * 100. / cum_U) |
|
print(results_str) |
|
|
|
|
|
def get_transform(args): |
|
transforms = [T.Resize(args.img_size, args.img_size), |
|
T.ToTensor(), |
|
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
] |
|
|
|
return T.Compose(transforms) |
|
|
|
|
|
def computeIoU(pred_seg, gd_seg): |
|
I = np.sum(np.logical_and(pred_seg, gd_seg)) |
|
U = np.sum(np.logical_or(pred_seg, gd_seg)) |
|
|
|
return I, U |
|
|
|
|
|
def main(args): |
|
device = torch.device(args.device) |
|
dataset_test, _ = get_dataset(args.split, get_transform(args=args), args) |
|
test_sampler = torch.utils.data.SequentialSampler(dataset_test) |
|
data_loader_test = torch.utils.data.DataLoader(dataset_test, batch_size=1, |
|
sampler=test_sampler, num_workers=args.workers) |
|
print(args.model) |
|
single_model = segmentation.__dict__[args.model](pretrained='',args=args) |
|
checkpoint = torch.load(args.resume, map_location='cpu') |
|
single_model.load_state_dict(checkpoint['model']) |
|
model = single_model.to(device) |
|
|
|
if args.model != 'lavt_one': |
|
model_class = BertModel |
|
single_bert_model = model_class.from_pretrained(args.ck_bert) |
|
|
|
if args.ddp_trained_weights: |
|
single_bert_model.pooler = None |
|
single_bert_model.load_state_dict(checkpoint['bert_model']) |
|
bert_model = single_bert_model.to(device) |
|
else: |
|
bert_model = None |
|
|
|
evaluate(model, data_loader_test, bert_model, device=device) |
|
|
|
|
|
if __name__ == "__main__": |
|
from args import get_parser |
|
parser = get_parser() |
|
args = parser.parse_args() |
|
print('Image size: {}'.format(str(args.img_size))) |
|
main(args) |
|
|