elia / lib /multimodal_swin.py
yxchng
add files
a166479
raw
history blame
11.5 kB
from .backbone import MultiModalSwinTransformer
import torch.nn as nn
import numpy as np
import torch
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows
class MultiModalSwin(MultiModalSwinTransformer):
def __init__(self,
pretrain_img_size=224,
patch_size=4,
in_chans=3,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.2,
norm_layer=nn.LayerNorm,
ape=False,
patch_norm=True,
out_indices=(0, 1, 2, 3),
frozen_stages=-1,
use_checkpoint=False,
num_heads_fusion=[1, 1, 1, 1],
fusion_drop=0.0
):
super().__init__(pretrain_img_size=pretrain_img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
depths=depths,
num_heads=num_heads,
window_size=window_size,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
norm_layer=norm_layer,
ape=ape,
patch_norm=patch_norm,
out_indices=out_indices,
frozen_stages=frozen_stages,
use_checkpoint=use_checkpoint,
num_heads_fusion=num_heads_fusion,
fusion_drop=fusion_drop
)
self.window_size = window_size
self.shift_size = window_size // 2
self.use_checkpoint = use_checkpoint
def forward_stem(self, x):
x = self.patch_embed(x)
Wh, Ww = x.size(2), x.size(3)
if self.ape:
# interpolate the position embedding to the corresponding size
absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C
else:
x = x.flatten(2).transpose(1, 2)
x = self.pos_drop(x)
return x, Wh, Ww
def forward_stage1(self, x, H, W):
#print("stage1", x.shape)
# calculate attention mask for SW-MSA
Hp = int(np.ceil(H / self.window_size)) * self.window_size
Wp = int(np.ceil(W / self.window_size)) * self.window_size
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
for blk in self.layers[0].blocks:
blk.H, blk.W = H, W
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x, attn_mask)
else:
x = blk(x, attn_mask) # output of a Block has shape (B, H*W, dim)
return x
def forward_stage2(self, x, H, W):
#print("stage2", x.shape)
#H, W = x.size(2), x.size(3)
# calculate attention mask for SW-MSA
Hp = int(np.ceil(H / self.window_size)) * self.window_size
Wp = int(np.ceil(W / self.window_size)) * self.window_size
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
for blk in self.layers[1].blocks:
blk.H, blk.W = H, W
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x, attn_mask)
else:
x = blk(x, attn_mask) # output of a Block has shape (B, H*W, dim)
return x
def forward_stage3(self, x, H, W):
#H, W = x.size(2), x.size(3)
# calculate attention mask for SW-MSA
Hp = int(np.ceil(H / self.window_size)) * self.window_size
Wp = int(np.ceil(W / self.window_size)) * self.window_size
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
for blk in self.layers[2].blocks:
blk.H, blk.W = H, W
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x, attn_mask)
else:
x = blk(x, attn_mask) # output of a Block has shape (B, H*W, dim)
return x
def forward_stage4(self, x, H, W):
#H, W = x.size(2), x.size(3)
# calculate attention mask for SW-MSA
Hp = int(np.ceil(H / self.window_size)) * self.window_size
Wp = int(np.ceil(W / self.window_size)) * self.window_size
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
for blk in self.layers[3].blocks:
blk.H, blk.W = H, W
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x, attn_mask)
else:
x = blk(x, attn_mask) # output of a Block has shape (B, H*W, dim)
return x
def forward_pwam1(self, x, H, W, l, l_mask):
# PWAM fusion
x_residual = self.layers[0].fusion(x, l, l_mask)
# apply a gate on the residual
x = x + (self.layers[0].res_gate(x_residual) * x_residual)
x_residual = self.norm0(x_residual)
x_residual = x_residual.view(-1, H, W, self.num_features[0]).permute(0, 3, 1, 2).contiguous()
if self.layers[0].downsample is not None:
x_down = self.layers[0].downsample(x, H, W)
Wh, Ww = (H + 1) // 2, (W + 1) // 2
return x_residual, H, W, x_down, Wh, Ww
else:
return x_residual, H, W, x, H, W
def forward_pwam2(self, x, H, W, l, l_mask):
# PWAM fusion
x_residual = self.layers[1].fusion(x, l, l_mask)
# apply a gate on the residual
x = x + (self.layers[1].res_gate(x_residual) * x_residual)
x_residual = self.norm1(x_residual)
x_residual = x_residual.view(-1, H, W, self.num_features[1]).permute(0, 3, 1, 2).contiguous()
if self.layers[1].downsample is not None:
x_down = self.layers[1].downsample(x, H, W)
Wh, Ww = (H + 1) // 2, (W + 1) // 2
return x_residual, H, W, x_down, Wh, Ww
else:
return x_residual, H, W, x, H, W
def forward_pwam3(self, x, H, W, l, l_mask):
# PWAM fusion
x_residual = self.layers[2].fusion(x, l, l_mask)
# apply a gate on the residual
x = x + (self.layers[2].res_gate(x_residual) * x_residual)
x_residual = self.norm2(x_residual)
x_residual = x_residual.view(-1, H, W, self.num_features[2]).permute(0, 3, 1, 2).contiguous()
if self.layers[2].downsample is not None:
x_down = self.layers[2].downsample(x, H, W)
Wh, Ww = (H + 1) // 2, (W + 1) // 2
return x_residual, H, W, x_down, Wh, Ww
else:
return x_residual, H, W, x, H, W
def forward_pwam4(self, x, H, W, l, l_mask):
# PWAM fusion
x_residual = self.layers[3].fusion(x, l, l_mask)
# apply a gate on the residual
x = x + (self.layers[3].res_gate(x_residual) * x_residual)
x_residual = self.norm3(x_residual)
x_residual = x_residual.view(-1, H, W, self.num_features[3]).permute(0, 3, 1, 2).contiguous()
if self.layers[3].downsample is not None:
x_down = self.layers[3].downsample(x, H, W)
Wh, Ww = (H + 1) // 2, (W + 1) // 2
return x_residual, H, W, x_down, Wh, Ww
else:
return x_residual, H, W, x, H, W