|
import numpy as np |
|
from PIL import Image |
|
import random |
|
|
|
import torch |
|
from torchvision import transforms as T |
|
from torchvision.transforms import functional as F |
|
|
|
|
|
def pad_if_smaller(img, size, fill=0): |
|
min_size = min(img.size) |
|
if min_size < size: |
|
ow, oh = img.size |
|
padh = size - oh if oh < size else 0 |
|
padw = size - ow if ow < size else 0 |
|
img = F.pad(img, (0, 0, padw, padh), fill=fill) |
|
return img |
|
|
|
|
|
class Compose(object): |
|
def __init__(self, transforms): |
|
self.transforms = transforms |
|
|
|
def __call__(self, image, target): |
|
for t in self.transforms: |
|
image, target = t(image, target) |
|
return image, target |
|
|
|
|
|
class Resize(object): |
|
def __init__(self, h, w): |
|
self.h = h |
|
self.w = w |
|
|
|
def __call__(self, image, target): |
|
image = F.resize(image, (self.h, self.w)) |
|
|
|
|
|
target = F.resize(target, (self.h, self.w), interpolation=Image.NEAREST) |
|
return image, target |
|
|
|
|
|
class RandomResize(object): |
|
def __init__(self, min_size, max_size=None): |
|
self.min_size = min_size |
|
if max_size is None: |
|
max_size = min_size |
|
self.max_size = max_size |
|
|
|
def __call__(self, image, target): |
|
size = random.randint(self.min_size, self.max_size) |
|
image = F.resize(image, size) |
|
|
|
|
|
target = F.resize(target, size, interpolation=Image.NEAREST) |
|
return image, target |
|
|
|
|
|
class RandomHorizontalFlip(object): |
|
def __init__(self, flip_prob): |
|
self.flip_prob = flip_prob |
|
|
|
def __call__(self, image, target): |
|
if random.random() < self.flip_prob: |
|
image = F.hflip(image) |
|
target = F.hflip(target) |
|
return image, target |
|
|
|
|
|
class RandomCrop(object): |
|
def __init__(self, size): |
|
self.size = size |
|
|
|
def __call__(self, image, target): |
|
image = pad_if_smaller(image, self.size) |
|
target = pad_if_smaller(target, self.size, fill=255) |
|
crop_params = T.RandomCrop.get_params(image, (self.size, self.size)) |
|
image = F.crop(image, *crop_params) |
|
target = F.crop(target, *crop_params) |
|
return image, target |
|
|
|
|
|
class CenterCrop(object): |
|
def __init__(self, size): |
|
self.size = size |
|
|
|
def __call__(self, image, target): |
|
image = F.center_crop(image, self.size) |
|
target = F.center_crop(target, self.size) |
|
return image, target |
|
|
|
|
|
class ToTensor(object): |
|
def __call__(self, image, target): |
|
image = F.to_tensor(image) |
|
target = torch.as_tensor(np.asarray(target).copy(), dtype=torch.int64) |
|
return image, target |
|
|
|
|
|
class RandomAffine(object): |
|
def __init__(self, angle, translate, scale, shear, resample=0, fillcolor=None): |
|
self.angle = angle |
|
self.translate = translate |
|
self.scale = scale |
|
self.shear = shear |
|
self.resample = resample |
|
self.fillcolor = fillcolor |
|
|
|
def __call__(self, image, target): |
|
affine_params = T.RandomAffine.get_params(self.angle, self.translate, self.scale, self.shear, image.size) |
|
image = F.affine(image, *affine_params) |
|
target = F.affine(target, *affine_params) |
|
return image, target |
|
|
|
|
|
class Normalize(object): |
|
def __init__(self, mean, std): |
|
self.mean = mean |
|
self.std = std |
|
|
|
def __call__(self, image, target): |
|
image = F.normalize(image, mean=self.mean, std=self.std) |
|
return image, target |
|
|
|
|