elia / demo_inference.py
yxchng
add files
a166479
raw
history blame
10.5 kB
image_path = './image001.png'
sentence = 'spoon on the dish'
weights = 'checkpoints/gradio.pth'
device = 'cpu'
# pre-process the input image
from PIL import Image
import torchvision.transforms as T
import numpy as np
import datetime
import os
import time
import torch
import torch.utils.data
from torch import nn
from bert.multimodal_bert import MultiModalBert
import torchvision
from lib import multimodal_segmentation_ppm
#import transforms as T
import utils
import numpy as np
from PIL import Image
import torch.nn.functional as F
from modeling.MaskFormerModel import MaskFormerHead
from addict import Dict
#from bert.modeling_bert import BertLMPredictionHead, BertEncoder
import cv2
import textwrap
class WrapperModel(nn.Module):
def __init__(self, image_model, language_model, classifier) :
super(WrapperModel, self).__init__()
self.image_model = image_model
self.language_model = language_model
self.classifier = classifier
config = Dict({
"architectures": [
"BertForMaskedLM"
],
"attention_probs_dropout_prob": 0.1,
"gradient_checkpointing": False,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 512,
"initializer_range": 0.02,
"intermediate_size": 3072,
"layer_norm_eps": 1e-12,
#"max_position_embeddings": 16+20,
"model_type": "bert",
"num_attention_heads": 8,
"num_hidden_layers": 8,
"pad_token_id": 0,
"position_embedding_type": "absolute",
"transformers_version": "4.6.0.dev0",
"type_vocab_size": 2,
"use_cache": True,
"vocab_size": 30522
})
def _get_binary_mask(self, target):
# 返回每类的binary mask
y, x = target.size()
target_onehot = torch.zeros(self.num_classes + 1, y, x)
target_onehot = target_onehot.scatter(dim=0, index=target.unsqueeze(0), value=1)
return target_onehot[1:]
def semantic_inference(self, mask_cls, mask_pred):
mask_cls = F.softmax(mask_cls, dim=1)[...,1:]
mask_pred = mask_pred.sigmoid()
semseg = torch.einsum("bqc,bqhw->bchw", mask_cls, mask_pred)
return semseg
def forward(self, image, sentences, attentions):
print(image.sum(), sentences.sum(), attentions.sum())
input_shape = image.shape[-2:]
l_mask = attentions.unsqueeze(dim=-1)
i0, Wh, Ww = self.image_model.forward_stem(image)
l0, extended_attention_mask = self.language_model.forward_stem(sentences, attentions)
i1 = self.image_model.forward_stage1(i0, Wh, Ww)
l1 = self.language_model.forward_stage1(l0, extended_attention_mask)
i1_residual, H, W, i1_temp, Wh, Ww = self.image_model.forward_pwam1(i1, Wh, Ww, l1, l_mask)
l1_residual, l1 = self.language_model.forward_pwam1(i1, l1, extended_attention_mask)
i1 = i1_temp
i2 = self.image_model.forward_stage2(i1, Wh, Ww)
l2 = self.language_model.forward_stage2(l1, extended_attention_mask)
i2_residual, H, W, i2_temp, Wh, Ww = self.image_model.forward_pwam2(i2, Wh, Ww, l2, l_mask)
l2_residual, l2 = self.language_model.forward_pwam2(i2, l2, extended_attention_mask)
i2 = i2_temp
i3 = self.image_model.forward_stage3(i2, Wh, Ww)
l3 = self.language_model.forward_stage3(l2, extended_attention_mask)
i3_residual, H, W, i3_temp, Wh, Ww = self.image_model.forward_pwam3(i3, Wh, Ww, l3, l_mask)
l3_residual, l3 = self.language_model.forward_pwam3(i3, l3, extended_attention_mask)
i3 = i3_temp
i4 = self.image_model.forward_stage4(i3, Wh, Ww)
l4 = self.language_model.forward_stage4(l3, extended_attention_mask)
i4_residual, H, W, i4_temp, Wh, Ww = self.image_model.forward_pwam4(i4, Wh, Ww, l4, l_mask)
l4_residual, l4 = self.language_model.forward_pwam4(i4, l4, extended_attention_mask)
i4 = i4_temp
#i1_residual, i2_residual, i3_residual, i4_residual = features
#x = self.classifier(i4_residual, i3_residual, i2_residual, i1_residual)
#x = F.interpolate(x, size=input_shape, mode='bilinear', align_corners=True)
outputs = {}
outputs['s1'] = i1_residual
outputs['s2'] = i2_residual
outputs['s3'] = i3_residual
outputs['s4'] = i4_residual
predictions = self.classifier(outputs)
return predictions
#img = Image.open(image_path).convert("RGB")
img = Image.open(image_path).convert("RGB")
img_ndarray = np.array(img) # (orig_h, orig_w, 3); for visualization
original_w, original_h = img.size # PIL .size returns width first and height second
image_transforms = T.Compose(
[
T.Resize((480, 480)),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]
)
img = image_transforms(img).unsqueeze(0) # (1, 3, 480, 480)
img = img.to(device) # for inference (input)
# pre-process the raw sentence
from bert.tokenization_bert import BertTokenizer
import torch
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
sentence_tokenized = tokenizer.encode(text=sentence, add_special_tokens=True)
sentence_tokenized = sentence_tokenized[:20] # if the sentence is longer than 20, then this truncates it to 20 words
# pad the tokenized sentence
padded_sent_toks = [0] * 20
padded_sent_toks[:len(sentence_tokenized)] = sentence_tokenized
# create a sentence token mask: 1 for real words; 0 for padded tokens
attention_mask = [0] * 20
attention_mask[:len(sentence_tokenized)] = [1]*len(sentence_tokenized)
# convert lists to tensors
padded_sent_toks = torch.tensor(padded_sent_toks).unsqueeze(0) # (1, 20)
attention_mask = torch.tensor(attention_mask).unsqueeze(0) # (1, 20)
padded_sent_toks = padded_sent_toks.to(device) # for inference (input)
attention_mask = attention_mask.to(device) # for inference (input)
# initialize model and load weights
#from bert.modeling_bert import BertModel
#from lib import segmentation
# construct a mini args class; like from a config file
class args:
swin_type = 'base'
window12 = True
mha = ''
fusion_drop = 0.0
#single_model = segmentation.__dict__['lavt'](pretrained='', args=args)
single_model = multimodal_segmentation_ppm.__dict__['lavt'](pretrained='',args=args)
single_model.to(device)
model_class = MultiModalBert
single_bert_model = model_class.from_pretrained('bert-base-uncased', embed_dim=single_model.backbone.embed_dim)
single_bert_model.pooler = None
input_shape = dict()
input_shape['s1'] = Dict({'channel': 128, 'stride': 4})
input_shape['s2'] = Dict({'channel': 256, 'stride': 8})
input_shape['s3'] = Dict({'channel': 512, 'stride': 16})
input_shape['s4'] = Dict({'channel': 1024, 'stride': 32})
cfg = Dict()
cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE = 4
cfg.MODEL.MASK_FORMER.DROPOUT = 0.0
cfg.MODEL.MASK_FORMER.NHEADS = 8
cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS = 4
cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM = 256
cfg.MODEL.SEM_SEG_HEAD.MASK_DIM = 256
cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES = ["s1", "s2", "s3", "s4"]
cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES = 1
cfg.MODEL.MASK_FORMER.HIDDEN_DIM = 256
cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES = 1
cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD = 2048
cfg.MODEL.MASK_FORMER.DEC_LAYERS = 10
cfg.MODEL.MASK_FORMER.PRE_NORM = False
maskformer_head = MaskFormerHead(cfg, input_shape)
model = WrapperModel(single_model.backbone, single_bert_model, maskformer_head)
checkpoint = torch.load(weights, map_location='cpu')
model.load_state_dict(checkpoint['model'], strict=False)
model.to(device)
model.eval()
#single_bert_model.load_state_dict(checkpoint['bert_model'])
#single_model.load_state_dict(checkpoint['model'])
#model = single_model.to(device)
#bert_model = single_bert_model.to(device)
# inference
#import torch.nn.functional as F
#last_hidden_states = bert_model(padded_sent_toks, attention_mask=attention_mask)[0]
#embedding = last_hidden_states.permute(0, 2, 1)
#output = model(img, embedding, l_mask=attention_mask.unsqueeze(-1))
#output = output.argmax(1, keepdim=True) # (1, 1, 480, 480)
#output = F.interpolate(output.float(), (original_h, original_w)) # 'nearest'; resize to the original image size
#output = output.squeeze() # (orig_h, orig_w)
#output = output.cpu().data.numpy() # (orig_h, orig_w)
output = model(img, padded_sent_toks, attention_mask)[0]
#print(output[0].keys())
#print(output[1].shape)
mask_cls_results = output["pred_logits"]
mask_pred_results = output["pred_masks"]
target_shape = img_ndarray.shape[:2]
#print(target_shape, mask_pred_results.shape)
mask_pred_results = F.interpolate(mask_pred_results, size=(480,480), mode='bilinear', align_corners=True)
pred_masks = model.semantic_inference(mask_cls_results, mask_pred_results)
#output = pred_masks[0]
#output = output.cpu()
#print(output.shape)
#output_mask = output.argmax(1).data.numpy()
#output = (output > 0.5).data.cpu().numpy()
output = torch.nn.functional.interpolate(pred_masks, target_shape)
output = (output > 0.5).data.cpu().numpy()
# show/save results
def overlay_davis(image, mask, colors=[[0, 0, 0], [255, 0, 0]], cscale=1, alpha=0.4):
from scipy.ndimage.morphology import binary_dilation
colors = np.reshape(colors, (-1, 3))
colors = np.atleast_2d(colors) * cscale
im_overlay = image.copy()
object_ids = np.unique(mask)
for object_id in object_ids[1:]:
# Overlay color on binary mask
foreground = image*alpha + np.ones(image.shape)*(1-alpha) * np.array(colors[object_id])
binary_mask = mask == object_id
# Compose image
im_overlay[binary_mask] = foreground[binary_mask]
# countours = skimage.morphology.binary.binary_dilation(binary_mask) - binary_mask
countours = binary_dilation(binary_mask) ^ binary_mask
# countours = cv2.dilate(binary_mask, cv2.getStructuringElement(cv2.MORPH_CROSS,(3,3))) - binary_mask
im_overlay[countours, :] = 0
return im_overlay.astype(image.dtype)
output = output.astype(np.uint8) # (orig_h, orig_w), np.uint8
# Overlay the mask on the image
print(img_ndarray.shape, output.shape)
visualization = overlay_davis(img_ndarray, output[0][0]) # red
visualization = Image.fromarray(visualization)
# show the visualization
#visualization.show()
# Save the visualization
visualization.save('./demo/spoon_on_the_dish.jpg')