Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -8,8 +8,6 @@ import tempfile
|
|
8 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
9 |
from gradio.components import Audio, Dropdown, Radio, Textbox
|
10 |
import os
|
11 |
-
import numpy as np
|
12 |
-
import soundfile as sf
|
13 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
14 |
|
15 |
|
@@ -47,66 +45,33 @@ def load_models():
|
|
47 |
|
48 |
load_models()
|
49 |
|
50 |
-
model_size = "large-v2"
|
51 |
-
model = WhisperModel(model_size)
|
52 |
-
|
53 |
# Fonction pour la transcription
|
54 |
def transcribe_audio(audio_file):
|
55 |
-
|
56 |
-
|
57 |
# model = WhisperModel(model_size, device=device, compute_type="int8")
|
58 |
-
global model
|
59 |
segments, _ = model.transcribe(audio_file, beam_size=1)
|
60 |
transcriptions = [("[%.2fs -> %.2fs]" % (seg.start, seg.end), seg.text) for seg in segments]
|
61 |
return transcriptions
|
62 |
|
63 |
-
# Fonction pour la traduction
|
64 |
# Fonction pour la traduction
|
65 |
def traduction(text, source_lang, target_lang):
|
66 |
-
# Vérifier si les codes de langue sont dans flores_codes
|
67 |
-
if source_lang not in flores_codes or target_lang not in flores_codes:
|
68 |
-
print(f"Code de langue non trouvé : {source_lang} ou {target_lang}")
|
69 |
-
return ""
|
70 |
-
|
71 |
-
src_code = flores_codes[source_lang]
|
72 |
-
tgt_code = flores_codes[target_lang]
|
73 |
-
|
74 |
model_name = "nllb-distilled-600M"
|
75 |
model = model_dict[model_name + "_model"]
|
76 |
tokenizer = model_dict[model_name + "_tokenizer"]
|
77 |
translator = pipeline("translation", model=model, tokenizer=tokenizer)
|
78 |
-
|
79 |
-
return translator(text, src_lang=src_code, tgt_lang=tgt_code)[0]["translation_text"]
|
80 |
-
|
81 |
|
82 |
# Fonction principale
|
83 |
-
def full_transcription_and_translation(
|
84 |
-
|
85 |
-
|
86 |
-
audio_file = download_yt_audio(audio_input)
|
87 |
-
# Si audio_input est un dictionnaire contenant des données audio
|
88 |
-
elif isinstance(audio_input, dict) and "array" in audio_input and "sampling_rate" in audio_input:
|
89 |
-
audio_array = audio_input["array"]
|
90 |
-
sampling_rate = audio_input["sampling_rate"]
|
91 |
-
# Écrivez le tableau NumPy dans un fichier temporaire WAV
|
92 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as f:
|
93 |
-
sf.write(f, audio_array, sampling_rate)
|
94 |
-
audio_file = f.name
|
95 |
-
else:
|
96 |
-
# Supposons que c'est un chemin de fichier
|
97 |
-
audio_file = audio_input
|
98 |
-
|
99 |
transcriptions = transcribe_audio(audio_file)
|
100 |
translations = [(timestamp, traduction(text, source_lang, target_lang)) for timestamp, text in transcriptions]
|
101 |
-
|
102 |
-
# Supprimez le fichier temporaire s'il a été créé
|
103 |
-
if isinstance(audio_input, dict):
|
104 |
-
os.remove(audio_file)
|
105 |
-
|
106 |
return transcriptions, translations
|
107 |
|
108 |
# Téléchargement audio YouTube
|
109 |
-
|
110 |
with tempfile.NamedTemporaryFile(suffix='.mp3') as f:
|
111 |
ydl_opts = {
|
112 |
'format': 'bestaudio/best',
|
@@ -119,7 +84,7 @@ def full_transcription_and_translation(audio_input, source_lang, target_lang):
|
|
119 |
}
|
120 |
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
121 |
ydl.download([yt_url])
|
122 |
-
return f.name
|
123 |
|
124 |
lang_codes = list(flores_codes.keys())
|
125 |
|
@@ -132,105 +97,17 @@ def gradio_interface(audio_file, source_lang, target_lang):
|
|
132 |
translated_text = '\n'.join([f"{timestamp}: {text}" for timestamp, text in translations])
|
133 |
return transcribed_text, translated_text
|
134 |
|
135 |
-
|
136 |
-
def _return_yt_html_embed(yt_url):
|
137 |
-
video_id = yt_url.split("?v=")[-1]
|
138 |
-
HTML_str = (
|
139 |
-
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
140 |
-
" </center>"
|
141 |
-
)
|
142 |
-
return HTML_str
|
143 |
-
|
144 |
-
def download_yt_audio(yt_url, filename):
|
145 |
-
info_loader = youtube_dl.YoutubeDL()
|
146 |
-
|
147 |
-
try:
|
148 |
-
info = info_loader.extract_info(yt_url, download=False)
|
149 |
-
except youtube_dl.utils.DownloadError as err:
|
150 |
-
raise gr.Error(str(err))
|
151 |
-
|
152 |
-
file_length = info["duration_string"]
|
153 |
-
file_h_m_s = file_length.split(":")
|
154 |
-
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
155 |
-
|
156 |
-
if len(file_h_m_s) == 1:
|
157 |
-
file_h_m_s.insert(0, 0)
|
158 |
-
if len(file_h_m_s) == 2:
|
159 |
-
file_h_m_s.insert(0, 0)
|
160 |
-
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
161 |
-
|
162 |
-
if file_length_s > YT_LENGTH_LIMIT_S:
|
163 |
-
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
164 |
-
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
165 |
-
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
166 |
-
|
167 |
-
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
168 |
-
|
169 |
-
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
170 |
-
try:
|
171 |
-
ydl.download([yt_url])
|
172 |
-
except youtube_dl.utils.ExtractorError as err:
|
173 |
-
raise gr.Error(str(err))
|
174 |
-
|
175 |
-
|
176 |
-
def yt_transcribe(yt_url, task, max_filesize=75.0):
|
177 |
-
html_embed_str = _return_yt_html_embed(yt_url)
|
178 |
-
global model # Assurez-vous que model est accessibl
|
179 |
-
|
180 |
-
with tempfile.TemporaryDirectory() as tmpdirname:
|
181 |
-
filepath = os.path.join(tmpdirname, "video.mp4")
|
182 |
-
download_yt_audio(yt_url, filepath)
|
183 |
-
with open(filepath, "rb") as f:
|
184 |
-
inputs = f.read()
|
185 |
-
|
186 |
-
inputs = ffmpeg_read(inputs, model.feature_extractor.sampling_rate)
|
187 |
-
inputs = {"array": inputs, "sampling_rate": model.feature_extractor.sampling_rate}
|
188 |
-
|
189 |
-
transcriptions, translations = full_transcription_and_translation(inputs, source_lang, target_lang)
|
190 |
-
transcribed_text = '\n'.join([f"{timestamp}: {text}" for timestamp, text in transcriptions])
|
191 |
-
translated_text = '\n'.join([f"{timestamp}: {text}" for timestamp, text in translations])
|
192 |
-
return html_embed_str, transcribed_text, translated_text
|
193 |
-
|
194 |
-
|
195 |
-
# Interfaces
|
196 |
-
demo = gr.Blocks()
|
197 |
-
|
198 |
-
mf_transcribe = gr.Interface(
|
199 |
fn=gradio_interface,
|
200 |
inputs=[
|
201 |
-
gr.Audio(
|
202 |
-
gr.Dropdown(lang_codes, value='French', label='Source Language'),
|
203 |
-
gr.Dropdown(lang_codes, value='English', label='Target Language')
|
204 |
],
|
205 |
outputs=[
|
206 |
-
gr.Textbox(label="Transcribed Text"),
|
207 |
-
gr.Textbox(label="Translated Text")
|
|
|
208 |
)
|
209 |
|
210 |
-
|
211 |
-
fn=gradio_interface,
|
212 |
-
inputs=[
|
213 |
-
gr.Audio(type="filepath", label="Audio file"),
|
214 |
-
gr.Dropdown(lang_codes, value='French', label='Source Language'),
|
215 |
-
gr.Dropdown(lang_codes, value='English', label='Target Language')
|
216 |
-
],
|
217 |
-
outputs=[
|
218 |
-
gr.Textbox(label="Transcribed Text"),
|
219 |
-
gr.Textbox(label="Translated Text")]
|
220 |
-
)
|
221 |
-
|
222 |
-
yt_transcribe = gr.Interface(
|
223 |
-
fn=yt_transcribe,
|
224 |
-
inputs=[
|
225 |
-
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
226 |
-
gr.Dropdown(lang_codes, value='French', label='Source Language'),
|
227 |
-
gr.Dropdown(lang_codes, value='English', label='Target Language')
|
228 |
-
],
|
229 |
-
outputs=["html", gr.Textbox(label="Transcribed Text"), gr.Textbox(label="Translated Text")]
|
230 |
-
)
|
231 |
-
|
232 |
-
with demo:
|
233 |
-
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
|
234 |
-
|
235 |
-
|
236 |
-
demo.launch()
|
|
|
8 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
9 |
from gradio.components import Audio, Dropdown, Radio, Textbox
|
10 |
import os
|
|
|
|
|
11 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
12 |
|
13 |
|
|
|
45 |
|
46 |
load_models()
|
47 |
|
|
|
|
|
|
|
48 |
# Fonction pour la transcription
|
49 |
def transcribe_audio(audio_file):
|
50 |
+
model_size = "large-v2"
|
51 |
+
model = WhisperModel(model_size)
|
52 |
# model = WhisperModel(model_size, device=device, compute_type="int8")
|
|
|
53 |
segments, _ = model.transcribe(audio_file, beam_size=1)
|
54 |
transcriptions = [("[%.2fs -> %.2fs]" % (seg.start, seg.end), seg.text) for seg in segments]
|
55 |
return transcriptions
|
56 |
|
|
|
57 |
# Fonction pour la traduction
|
58 |
def traduction(text, source_lang, target_lang):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
model_name = "nllb-distilled-600M"
|
60 |
model = model_dict[model_name + "_model"]
|
61 |
tokenizer = model_dict[model_name + "_tokenizer"]
|
62 |
translator = pipeline("translation", model=model, tokenizer=tokenizer)
|
63 |
+
return translator(text, src_lang=flores_codes[source_lang], tgt_lang=flores_codes[target_lang])[0]["translation_text"]
|
|
|
|
|
64 |
|
65 |
# Fonction principale
|
66 |
+
def full_transcription_and_translation(audio_file, source_lang, target_lang):
|
67 |
+
if audio_file.startswith("http"):
|
68 |
+
audio_file = download_yt_audio(audio_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
transcriptions = transcribe_audio(audio_file)
|
70 |
translations = [(timestamp, traduction(text, source_lang, target_lang)) for timestamp, text in transcriptions]
|
|
|
|
|
|
|
|
|
|
|
71 |
return transcriptions, translations
|
72 |
|
73 |
# Téléchargement audio YouTube
|
74 |
+
def download_yt_audio(yt_url):
|
75 |
with tempfile.NamedTemporaryFile(suffix='.mp3') as f:
|
76 |
ydl_opts = {
|
77 |
'format': 'bestaudio/best',
|
|
|
84 |
}
|
85 |
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
86 |
ydl.download([yt_url])
|
87 |
+
return f.name
|
88 |
|
89 |
lang_codes = list(flores_codes.keys())
|
90 |
|
|
|
97 |
translated_text = '\n'.join([f"{timestamp}: {text}" for timestamp, text in translations])
|
98 |
return transcribed_text, translated_text
|
99 |
|
100 |
+
iface = gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
fn=gradio_interface,
|
102 |
inputs=[
|
103 |
+
gr.Audio(type="filepath"),
|
104 |
+
gr.Dropdown(lang_codes, value='French', label='Source Language'),
|
105 |
+
gr.Dropdown(lang_codes, value='English', label='Target Language'),
|
106 |
],
|
107 |
outputs=[
|
108 |
+
gr.Textbox(label="Transcribed Text"),
|
109 |
+
gr.Textbox(label="Translated Text")
|
110 |
+
]
|
111 |
)
|
112 |
|
113 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|