Spaces:
Sleeping
Sleeping
import hashlib | |
import os | |
import urllib | |
import warnings | |
from typing import Any, Union, List | |
from pkg_resources import packaging | |
import torch | |
from PIL import Image | |
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize | |
from tqdm import tqdm | |
from .model import build_model | |
from .simple_tokenizer import SimpleTokenizer as _Tokenizer | |
try: | |
from torchvision.transforms import InterpolationMode | |
BICUBIC = InterpolationMode.BICUBIC | |
except ImportError: | |
BICUBIC = Image.BICUBIC | |
if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"): | |
warnings.warn("PyTorch version 1.7.1 or higher is recommended") | |
__all__ = ["available_models", "load", "tokenize"] | |
_tokenizer = _Tokenizer() | |
_MODELS = { | |
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt", | |
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt", | |
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt", | |
"RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt", | |
"RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt", | |
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", | |
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", | |
"ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt", | |
"ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt", | |
} | |
def _download(url: str, root: str): | |
os.makedirs(root, exist_ok=True) | |
filename = os.path.basename(url) | |
expected_sha256 = url.split("/")[-2] | |
download_target = os.path.join(root, filename) | |
if os.path.exists(download_target) and not os.path.isfile(download_target): | |
raise RuntimeError(f"{download_target} exists and is not a regular file") | |
if os.path.isfile(download_target): | |
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256: | |
return download_target | |
else: | |
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") | |
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: | |
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop: | |
while True: | |
buffer = source.read(8192) | |
if not buffer: | |
break | |
output.write(buffer) | |
loop.update(len(buffer)) | |
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256: | |
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match") | |
return download_target | |
def _convert_image_to_rgb(image): | |
return image.convert("RGB") | |
def _transform(n_px): | |
return Compose([ | |
Resize(n_px, interpolation=BICUBIC), | |
CenterCrop(n_px), | |
_convert_image_to_rgb, | |
ToTensor(), | |
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), | |
]) | |
def available_models() -> List[str]: | |
"""Returns the names of available CLIP models""" | |
return list(_MODELS.keys()) | |
def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None): | |
"""Load a CLIP model | |
Parameters | |
---------- | |
name : str | |
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict | |
device : Union[str, torch.device] | |
The device to put the loaded model | |
jit : bool | |
Whether to load the optimized JIT model or more hackable non-JIT model (default). | |
download_root: str | |
path to download the model files; by default, it uses "~/.cache/clip" | |
Returns | |
------- | |
model : torch.nn.Module | |
The CLIP model | |
preprocess : Callable[[PIL.Image], torch.Tensor] | |
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input | |
""" | |
if name in _MODELS: | |
model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip")) | |
elif os.path.isfile(name): | |
model_path = name | |
else: | |
raise RuntimeError(f"Model {name} not found; available models = {available_models()}") | |
with open(model_path, 'rb') as opened_file: | |
try: | |
# loading JIT archive | |
model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval() | |
state_dict = None | |
except RuntimeError: | |
# loading saved state dict | |
if jit: | |
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") | |
jit = False | |
state_dict = torch.load(opened_file, map_location="cpu") | |
if not jit: | |
model = build_model(state_dict or model.state_dict()).to(device) | |
if str(device) == "cpu": | |
model.float() | |
return model, _transform(model.visual.input_resolution) | |
# patch the device names | |
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) | |
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1] | |
def patch_device(module): | |
try: | |
graphs = [module.graph] if hasattr(module, "graph") else [] | |
except RuntimeError: | |
graphs = [] | |
if hasattr(module, "forward1"): | |
graphs.append(module.forward1.graph) | |
for graph in graphs: | |
for node in graph.findAllNodes("prim::Constant"): | |
if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"): | |
node.copyAttributes(device_node) | |
model.apply(patch_device) | |
patch_device(model.encode_image) | |
patch_device(model.encode_text) | |
# patch dtype to float32 on CPU | |
if str(device) == "cpu": | |
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) | |
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] | |
float_node = float_input.node() | |
def patch_float(module): | |
try: | |
graphs = [module.graph] if hasattr(module, "graph") else [] | |
except RuntimeError: | |
graphs = [] | |
if hasattr(module, "forward1"): | |
graphs.append(module.forward1.graph) | |
for graph in graphs: | |
for node in graph.findAllNodes("aten::to"): | |
inputs = list(node.inputs()) | |
for i in [1, 2]: # dtype can be the second or third argument to aten::to() | |
if inputs[i].node()["value"] == 5: | |
inputs[i].node().copyAttributes(float_node) | |
model.apply(patch_float) | |
patch_float(model.encode_image) | |
patch_float(model.encode_text) | |
model.float() | |
return model, _transform(model.input_resolution.item()) | |
def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> Union[torch.IntTensor, torch.LongTensor]: | |
""" | |
Returns the tokenized representation of given input string(s) | |
Parameters | |
---------- | |
texts : Union[str, List[str]] | |
An input string or a list of input strings to tokenize | |
context_length : int | |
The context length to use; all CLIP models use 77 as the context length | |
truncate: bool | |
Whether to truncate the text in case its encoding is longer than the context length | |
Returns | |
------- | |
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]. | |
We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long. | |
""" | |
if isinstance(texts, str): | |
texts = [texts] | |
sot_token = _tokenizer.encoder["<|startoftext|>"] | |
eot_token = _tokenizer.encoder["<|endoftext|>"] | |
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] | |
if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"): | |
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) | |
else: | |
result = torch.zeros(len(all_tokens), context_length, dtype=torch.int) | |
for i, tokens in enumerate(all_tokens): | |
if len(tokens) > context_length: | |
if truncate: | |
tokens = tokens[:context_length] | |
tokens[-1] = eot_token | |
else: | |
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") | |
result[i, :len(tokens)] = torch.tensor(tokens) | |
return result | |