TF / app.py
yuvrajchauhan129's picture
Upload 10 files
fe39267
import glob
import streamlit as st
import wget
from PIL import Image
import torch
import cv2
import os
import time
st.set_page_config(layout="wide")
cfg_model_path = 'models/yolov5s.pt'
model = None
confidence = .25
def image_input(data_src):
img_file = None
if data_src == 'Sample data':
# get all sample images
img_path = glob.glob('data/sample_images/*')
img_slider = st.slider("Select a test image.", min_value=1, max_value=len(img_path), step=1)
img_file = img_path[img_slider - 1]
else:
img_bytes = st.sidebar.file_uploader("Upload an image", type=['png', 'jpeg', 'jpg'])
if img_bytes:
img_file = "data/uploaded_data/upload." + img_bytes.name.split('.')[-1]
Image.open(img_bytes).save(img_file)
if img_file:
col1, col2 = st.columns(2)
with col1:
st.image(img_file, caption="Selected Image")
with col2:
img = infer_image(img_file)
st.image(img, caption="Model prediction")
def video_input(data_src):
vid_file = None
if data_src == 'Sample data':
vid_file = "data/sample_videos/sample.mp4"
else:
vid_bytes = st.sidebar.file_uploader("Upload a video", type=['mp4', 'mpv', 'avi'])
if vid_bytes:
vid_file = "data/uploaded_data/upload." + vid_bytes.name.split('.')[-1]
with open(vid_file, 'wb') as out:
out.write(vid_bytes.read())
if vid_file:
cap = cv2.VideoCapture(vid_file)
custom_size = st.sidebar.checkbox("Custom frame size")
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
if custom_size:
width = st.sidebar.number_input("Width", min_value=120, step=20, value=width)
height = st.sidebar.number_input("Height", min_value=120, step=20, value=height)
fps = 0
st1, st2, st3 = st.columns(3)
with st1:
st.markdown("## Height")
st1_text = st.markdown(f"{height}")
with st2:
st.markdown("## Width")
st2_text = st.markdown(f"{width}")
with st3:
st.markdown("## FPS")
st3_text = st.markdown(f"{fps}")
st.markdown("---")
output = st.empty()
prev_time = 0
curr_time = 0
while True:
ret, frame = cap.read()
if not ret:
st.write("Can't read frame, stream ended? Exiting ....")
break
frame = cv2.resize(frame, (width, height))
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
output_img = infer_image(frame)
output.image(output_img)
curr_time = time.time()
fps = 1 / (curr_time - prev_time)
prev_time = curr_time
st1_text.markdown(f"**{height}**")
st2_text.markdown(f"**{width}**")
st3_text.markdown(f"**{fps:.2f}**")
cap.release()
from roboflow import Roboflow
rf = Roboflow(api_key="BSImkKkNh25lMbRDYAAC")
project = rf.workspace().project("ambulances-model")
modelA = project.version(5).model
def infer_image(img, size=None):
model.conf = confidence
result = model(img, size=size) if size else model(img)
abc=result.pandas().xyxy[0]
tdd=abc['name'].value_counts()
annos=tdd.to_string()
#print(str(result)[20:69])
result.render()
image = Image.fromarray(result.ims[0])
image.save("abc.jpg")
modelA.predict("abc.jpg", confidence=40, overlap=30).save("abc.jpg")
image=cv2.cvtColor(cv2.imread("abc.jpg"), cv2.COLOR_BGR2RGB)
y0, dy = 50, 50
for i, line in enumerate(annos.split('\n')):
y = y0 + i*dy
image=cv2.putText(image, line, (10, y ), cv2.FONT_HERSHEY_SIMPLEX,2,(255,255,0),10)
return image
@st.experimental_singleton
def load_model(path, device):
model_ = torch.hub.load('ultralytics/yolov5', 'custom', path=path, force_reload=True)
model_.to(device)
print("model to ", device)
return model_
@st.experimental_singleton
def download_model(url):
model_file = wget.download(url, out="models")
return model_file
def get_user_model():
model_src = st.sidebar.radio("Model source", ["file upload", "url"])
model_file = None
if model_src == "file upload":
model_bytes = st.sidebar.file_uploader("Upload a model file", type=['pt'])
if model_bytes:
model_file = "models/uploaded_" + model_bytes.name
with open(model_file, 'wb') as out:
out.write(model_bytes.read())
else:
url = st.sidebar.text_input("model url")
if url:
model_file_ = download_model(url)
if model_file_.split(".")[-1] == "pt":
model_file = model_file_
return model_file
def main():
# global variables
global model, confidence, cfg_model_path
st.title("Smart Traffic Management Using Transfer Learning Approach For Improved Urban Mobility")
st.sidebar.title("Options")
# upload model
model_src = st.sidebar.radio("Select yolov5 file", ["Use Yolo"])
# URL, upload file (max 200 mb)
if model_src == "Use your own model":
user_model_path = get_user_model()
if user_model_path:
cfg_model_path = user_model_path
st.sidebar.text(cfg_model_path.split("/")[-1])
st.sidebar.markdown("---")
# check if model file is available
if not os.path.isfile(cfg_model_path):
st.warning("Model not Found", icon="⚠️")
else:
# device options
if torch.cuda.is_available():
device_option = st.sidebar.radio("PC type", ['cpu', 'cuda'], disabled=False, index=0)
else:
device_option = st.sidebar.radio("PC type", ['cpu', 'cuda'], disabled=True, index=0)
# load model
model = load_model(cfg_model_path, device_option)
# confidence slider
confidence = st.sidebar.slider('Confidence', min_value=0.1, max_value=1.0, value=.45)
# custom classes
if st.sidebar.checkbox("Select Classes"):
model_names = list(model.names.values())
assigned_class = st.sidebar.multiselect("Select Classes", model_names, default=[model_names[0]])
classes = [model_names.index(name) for name in assigned_class]
model.classes = classes
else:
model.classes = list(model.names.keys())
st.sidebar.markdown("---")
# input options
input_option = st.sidebar.radio("Select type: ", ['image', 'video'])
# input src option
data_src = st.sidebar.radio("Select input source: ", ['Sample data', 'Upload your own data'])
if input_option == 'image':
image_input(data_src)
else:
video_input(data_src)
if __name__ == "__main__":
try:
main()
except SystemExit:
pass