Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- tools/generate-dataset.py +71 -0
- tools/run_eval.py +105 -0
- tools/test_query.py +29 -0
tools/generate-dataset.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
|
| 5 |
+
RAW_DIR = "data/raw"
|
| 6 |
+
|
| 7 |
+
def save_docs(dataset_name, docs, prefix, field="text"):
|
| 8 |
+
print(f"Saving {len(docs)} docs from {dataset_name}...")
|
| 9 |
+
for i, doc_content in enumerate(docs):
|
| 10 |
+
# Handle cases where content might be dict or list
|
| 11 |
+
if isinstance(doc_content, dict):
|
| 12 |
+
content = doc_content.get(field, "")
|
| 13 |
+
else:
|
| 14 |
+
content = doc_content
|
| 15 |
+
|
| 16 |
+
if not content:
|
| 17 |
+
continue
|
| 18 |
+
|
| 19 |
+
filename = f"{RAW_DIR}/{prefix}_{i:03d}.txt"
|
| 20 |
+
with open(filename, "w", encoding="utf-8") as f:
|
| 21 |
+
f.write(f"Source: {dataset_name}\n\n")
|
| 22 |
+
f.write(str(content))
|
| 23 |
+
|
| 24 |
+
def main():
|
| 25 |
+
os.makedirs(RAW_DIR, exist_ok=True)
|
| 26 |
+
|
| 27 |
+
# Clear existing files to avoid mixing fake data with real data
|
| 28 |
+
print("Clearing old data...")
|
| 29 |
+
import glob
|
| 30 |
+
files = glob.glob(f"{RAW_DIR}/*")
|
| 31 |
+
for f in files:
|
| 32 |
+
os.remove(f)
|
| 33 |
+
|
| 34 |
+
# 1. Multi-News (Long news articles)
|
| 35 |
+
print("Downloading Multi-News...")
|
| 36 |
+
try:
|
| 37 |
+
ds = load_dataset("alexfabbri/multi_news", split="train[:50]", trust_remote_code=True) # Take 50
|
| 38 |
+
save_docs("Multi-News", ds["document"], "multinews", field="document")
|
| 39 |
+
except Exception as e:
|
| 40 |
+
print(f"Error loading Multi-News: {e}")
|
| 41 |
+
|
| 42 |
+
# 2. GovReport (Gov reports)
|
| 43 |
+
print("Downloading GovReport...")
|
| 44 |
+
try:
|
| 45 |
+
ds = load_dataset("launch/gov_report", split="train[:20]", trust_remote_code=True) # Take 20 (they are long)
|
| 46 |
+
save_docs("GovReport", ds["document"], "govreport", field="document")
|
| 47 |
+
except Exception as e:
|
| 48 |
+
print(f"Error loading GovReport: {e}")
|
| 49 |
+
|
| 50 |
+
# 3. WikiQA (QA pairs - we'll index the candidate sentences as knowledge)
|
| 51 |
+
print("Downloading WikiQA...")
|
| 52 |
+
try:
|
| 53 |
+
ds = load_dataset("microsoft/wiki_qa", split="train[:100]", trust_remote_code=True) # Take 100
|
| 54 |
+
# WikiQA has 'question', 'answer', 'document_title', 'label'
|
| 55 |
+
save_docs("WikiQA", ds["answer"], "wikiqa", field="answer")
|
| 56 |
+
except Exception as e:
|
| 57 |
+
print(f"Error loading WikiQA: {e}")
|
| 58 |
+
|
| 59 |
+
# 4. Financial Phrasebank (Sentences)
|
| 60 |
+
print("Downloading Financial Phrasebank...")
|
| 61 |
+
try:
|
| 62 |
+
# Use official dataset for reliability
|
| 63 |
+
ds = load_dataset("financial_phrasebank", "sentences_allagree", split="train[:100]", trust_remote_code=True)
|
| 64 |
+
save_docs("FinancialPhrasebank", ds["sentence"], "finphrase", field="sentence")
|
| 65 |
+
except Exception as e:
|
| 66 |
+
print(f"Error loading Financial Phrasebank: {e}")
|
| 67 |
+
|
| 68 |
+
print("Done generating real data.")
|
| 69 |
+
|
| 70 |
+
if __name__ == "__main__":
|
| 71 |
+
main()
|
tools/run_eval.py
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
import numpy as np
|
| 6 |
+
from src.pipeline.query_pipeline import QueryPipeline
|
| 7 |
+
from src.eval.retrieval_metrics import recall_at_k, mrr_score, precision_at_k
|
| 8 |
+
from src.eval.hallucination import HallucinationGrader
|
| 9 |
+
from src.eval.relevancy import RelevancyGrader
|
| 10 |
+
|
| 11 |
+
def main():
|
| 12 |
+
print("Initializing Pipeline...")
|
| 13 |
+
pipeline = QueryPipeline()
|
| 14 |
+
grader = HallucinationGrader(pipeline.llm)
|
| 15 |
+
relevancy_grader = RelevancyGrader(pipeline.llm)
|
| 16 |
+
|
| 17 |
+
print("Loading Evaluation Data (WikiQA Test Split)...")
|
| 18 |
+
# For meaningful evaluation, we need questions that actually have answers in our indexed subset.
|
| 19 |
+
# Since we indexed the 'train' split of WikiQA (first 100), we should evaluate on that same subset
|
| 20 |
+
# to test "retrieval ability" (can it find what we vaguely know is there).
|
| 21 |
+
# In a real scenario, you'd test on a hold-out set, but only if you indexed the whole knowledge base.
|
| 22 |
+
try:
|
| 23 |
+
ds = load_dataset("microsoft/wiki_qa", split="train[:20]", trust_remote_code=True)
|
| 24 |
+
except Exception as e:
|
| 25 |
+
print(f"Error loading dataset: {e}")
|
| 26 |
+
return
|
| 27 |
+
|
| 28 |
+
# Metrics
|
| 29 |
+
recalls = []
|
| 30 |
+
precisions = []
|
| 31 |
+
mrrs = []
|
| 32 |
+
hallucination_scores = []
|
| 33 |
+
relevancy_scores = []
|
| 34 |
+
|
| 35 |
+
print("Running Evaluation...")
|
| 36 |
+
for i, row in tqdm(enumerate(ds), total=len(ds)):
|
| 37 |
+
query = row['question']
|
| 38 |
+
relevant_doc_content = row['answer'] # The correct sentence
|
| 39 |
+
is_correct = row['label'] == 1
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
if not is_correct:
|
| 45 |
+
# If this row isn't a correct answer pair, skip for retrieval accuracy measurement
|
| 46 |
+
# (or treat as a negative, but for RAG recall we usually care about positive queries)
|
| 47 |
+
continue
|
| 48 |
+
|
| 49 |
+
result = pipeline.run(query, top_k_retrieval=10, top_k_rerank=3)
|
| 50 |
+
|
| 51 |
+
# Retrieval Metrics
|
| 52 |
+
retrieved_contents = [doc if isinstance(doc, str) else doc['content'] for doc, score in result['context']]
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
# Check if relevant content is in retrieved
|
| 58 |
+
# The ingestion pipeline might add metadata like "Source: ...".
|
| 59 |
+
# So we check if the relevant content SUBSTRING is in the retrieved chunks.
|
| 60 |
+
is_hit = False
|
| 61 |
+
for content in retrieved_contents:
|
| 62 |
+
if relevant_doc_content in content:
|
| 63 |
+
is_hit = True
|
| 64 |
+
break
|
| 65 |
+
|
| 66 |
+
recalls.append(1.0 if is_hit else 0.0)
|
| 67 |
+
# Precision (strict: is the retrieved doc the specific sentence?)
|
| 68 |
+
# Since we only retrieve 10 and usually there is only 1 relevant sentence in WikiQA:
|
| 69 |
+
# Precision will be at best 0.1 if is_hit is true.
|
| 70 |
+
precisions.append(1.0/10.0 if is_hit else 0.0)
|
| 71 |
+
|
| 72 |
+
# MRR
|
| 73 |
+
# Find rank
|
| 74 |
+
rank = -1
|
| 75 |
+
for idx, content in enumerate(retrieved_contents):
|
| 76 |
+
if relevant_doc_content in content:
|
| 77 |
+
rank = idx + 1
|
| 78 |
+
break
|
| 79 |
+
|
| 80 |
+
if rank > 0:
|
| 81 |
+
mrrs.append(1.0 / rank)
|
| 82 |
+
else:
|
| 83 |
+
mrrs.append(0.0)
|
| 84 |
+
|
| 85 |
+
# Generation / Hallucination Metric
|
| 86 |
+
# We ask the LLM to grade if the answer supported by context
|
| 87 |
+
grade = grader.grade(
|
| 88 |
+
context="\n".join(retrieved_contents),
|
| 89 |
+
answer=result['answer']
|
| 90 |
+
)
|
| 91 |
+
hallucination_scores.append(grade.get('score', 0.0))
|
| 92 |
+
|
| 93 |
+
# New: Answer Relevancy
|
| 94 |
+
rel_grade = relevancy_grader.grade(query=query, answer=result['answer'])
|
| 95 |
+
relevancy_scores.append(rel_grade.get('score', 0.0))
|
| 96 |
+
|
| 97 |
+
print("\nXXX Evaluation Results XXX")
|
| 98 |
+
print(f"Average Recall@10: {np.mean(recalls):.4f}")
|
| 99 |
+
print(f"Average Precision@10: {np.mean(precisions):.4f}")
|
| 100 |
+
print(f"Average MRR: {np.mean(mrrs):.4f}")
|
| 101 |
+
print(f"Average Factuality Score: {np.mean(hallucination_scores):.4f}")
|
| 102 |
+
print(f"Average Answer Relevancy: {np.mean(relevancy_scores):.4f}")
|
| 103 |
+
|
| 104 |
+
if __name__ == "__main__":
|
| 105 |
+
main()
|
tools/test_query.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import os
|
| 3 |
+
from src.pipeline.query_pipeline import QueryPipeline
|
| 4 |
+
|
| 5 |
+
def test_manual_query():
|
| 6 |
+
print("Initializing Pipeline...")
|
| 7 |
+
pipeline = QueryPipeline()
|
| 8 |
+
|
| 9 |
+
query = 'what is emerging contaminants according to DOD?'
|
| 10 |
+
print(f"\nProcessing Query: {query}")
|
| 11 |
+
|
| 12 |
+
# Run pipeline
|
| 13 |
+
result = pipeline.run(query, top_k_retrieval=5, top_k_rerank=3)
|
| 14 |
+
|
| 15 |
+
print("\n--- Retrieved Context (Top 3) ---")
|
| 16 |
+
for doc, score in result['context']:
|
| 17 |
+
content = doc if isinstance(doc, str) else doc['content']
|
| 18 |
+
print(f"[Score: {score:.4f}] {content[:150]}...")
|
| 19 |
+
|
| 20 |
+
print("\n--- Generated Answer ---")
|
| 21 |
+
print(result['answer'])
|
| 22 |
+
|
| 23 |
+
print("\n--- Scores ---")
|
| 24 |
+
print(f"Retrieval Score: {result.get('retrieval_score', 'N/A')}")
|
| 25 |
+
print(f"Hallucination Score: {result.get('hallucination_score', 'N/A')}")
|
| 26 |
+
print(f"Groundedness: {result.get('groundedness', 'N/A')}")
|
| 27 |
+
|
| 28 |
+
if __name__ == "__main__":
|
| 29 |
+
test_manual_query()
|