essay-main-idea / main_idea_with_pipeline.py
yutingg's picture
Predict main idea sentence with custom-distill-bert-for-sentence-label
ecf6936
raw
history blame
1.3 kB
from nltk.tokenize import sent_tokenize, word_tokenize
import pandas as pd
# read in an essay and resturns a df in sentence level
def essay_to_sent(essay):
sentences = []
paragraphs = [l for l in essay.split('\n') if len(l) > 0]
for para in paragraphs:
# tokenize paragraph by "." and concatenate to sentences[]
sentences.extend(sent_tokenize(para))
return sentences
######################
# prerequisite:
# 1. Pip install transformer
# 2. Define tokenizer + MAX_LEN
# 3. Construct DistillBERTClass_SL class
# 4. Construct Triage_SL class
# 5. Define predict__SL class
# 6. Load model_SL & call eval()
# 7. Pre_define predict_params_SL
####################
from transformers import DistilBertTokenizer
from transformers import pipeline
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-cased')
def predict_mainidea_sent(paragraph, model):
# prepare data
sentences = essay_to_sent(paragraph)
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, device="cpu")
probability_score = pipe(sentences, batch_size=8, function_to_apply="sigmoid")
labels = [score['score'] > 0.5 for score in probability_score]
return pd.DataFrame([(str(l), s) for l, s in zip(labels, sentences)], columns=['label', 'sentence'])