Initial Release
Browse files- .gitignore +5 -0
- README.md +7 -6
- app.py +263 -0
- not-found.png +0 -0
- requirements.txt +24 -0
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
TrCaption/*
|
2 |
+
trclip-vitl14-e10/*
|
3 |
+
TrCaption-trclip-vitl14-e10/*
|
4 |
+
TrCaption-trclip-vitl14-e10-old/*
|
5 |
+
.idea/*
|
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces
|
|
|
1 |
---
|
2 |
+
title: Trclip
|
3 |
+
emoji: 📈
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.0.20
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: afl-3.0
|
11 |
---
|
12 |
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
app.py
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Importing all the necessary libraries
|
2 |
+
import os
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
from tqdm import tqdm
|
8 |
+
from trclip.trclip import Trclip
|
9 |
+
from trclip.visualizer import image_retrieval_visualize, text_retrieval_visualize
|
10 |
+
|
11 |
+
print(f'gr version : {gr.__version__}')
|
12 |
+
import pickle
|
13 |
+
import random
|
14 |
+
|
15 |
+
# %%
|
16 |
+
model_name = 'trclip-vitl14-e10'
|
17 |
+
if not os.path.exists(model_name):
|
18 |
+
os.system(f'git clone https://huggingface.co/yusufani/{model_name} --progress')
|
19 |
+
# %%
|
20 |
+
if not os.path.exists('TrCaption-trclip-vitl14-e10'):
|
21 |
+
os.system(f'git clone https://huggingface.co/datasets/yusufani/TrCaption-trclip-vitl14-e10/ --progress')
|
22 |
+
os.chdir('TrCaption-trclip-vitl14-e10')
|
23 |
+
os.system(f'git lfs install')
|
24 |
+
os.system(f' git lfs fetch')
|
25 |
+
os.system(f' git lfs pull')
|
26 |
+
os.chdir('..')
|
27 |
+
|
28 |
+
|
29 |
+
# %%
|
30 |
+
|
31 |
+
def load_image_embeddings():
|
32 |
+
path = os.path.join('TrCaption-trclip-vitl14-e10', 'image_embeddings')
|
33 |
+
bs = 100_000
|
34 |
+
embeddings = []
|
35 |
+
|
36 |
+
for i in tqdm(range(0, 3_100_000, bs), desc='Loading TrCaption Image embeddings'):
|
37 |
+
with open(os.path.join(path, f'image_em_{i}.pkl'), 'rb') as f:
|
38 |
+
embeddings.append(pickle.load(f))
|
39 |
+
return torch.cat(embeddings, dim=0)
|
40 |
+
|
41 |
+
def load_text_embeddings():
|
42 |
+
path = os.path.join('TrCaption-trclip-vitl14-e10', 'text_embeddings')
|
43 |
+
bs = 100_000
|
44 |
+
embeddings = []
|
45 |
+
for i in tqdm(range(0, 3_600_000, bs), desc='Loading TrCaption text embeddings'):
|
46 |
+
with open(os.path.join(path, f'text_em_{i}.pkl'), 'rb') as f:
|
47 |
+
embeddings.append(pickle.load(f))
|
48 |
+
return torch.cat(embeddings, dim=0)
|
49 |
+
|
50 |
+
|
51 |
+
def load_metadata():
|
52 |
+
path = os.path.join('TrCaption-trclip-vitl14-e10', 'metadata.pkl')
|
53 |
+
with open(path, 'rb') as f:
|
54 |
+
metadata = pickle.load(f)
|
55 |
+
trcap_texts = metadata['texts']
|
56 |
+
trcap_urls = metadata['image_urls']
|
57 |
+
return trcap_texts, trcap_urls
|
58 |
+
|
59 |
+
def load_spesific_tensor(index , type , bs= 100_000):
|
60 |
+
part = index // bs
|
61 |
+
idx = index % bs
|
62 |
+
with open(os.path.join('TrCaption-trclip-vitl14-e10', f'{type}_embeddings', f'{type}_em_{part*bs}.pkl'), 'rb') as f:
|
63 |
+
embeddings = pickle.load(f)
|
64 |
+
return embeddings[idx]
|
65 |
+
|
66 |
+
# %%
|
67 |
+
|
68 |
+
image_embeddings = None
|
69 |
+
text_embeddings = None
|
70 |
+
|
71 |
+
#%%
|
72 |
+
trcap_texts, trcap_urls = load_metadata()
|
73 |
+
# %%
|
74 |
+
model_path = os.path.join(model_name, 'pytorch_model.bin')
|
75 |
+
trclip = Trclip(model_path, clip_model='ViT-L/14', device='cpu')
|
76 |
+
#%%
|
77 |
+
import psutil
|
78 |
+
|
79 |
+
print(f"First used memory {psutil.virtual_memory().used/float(1<<30):,.0f} GB" , )
|
80 |
+
# %%
|
81 |
+
|
82 |
+
def run_im(im1, use_trcap_images, text1, use_trcap_texts):
|
83 |
+
f_texts_embeddings = None
|
84 |
+
f_image_embeddings = None
|
85 |
+
global image_embeddings
|
86 |
+
global text_embeddings
|
87 |
+
ims = None
|
88 |
+
print("im2", use_trcap_images)
|
89 |
+
if use_trcap_images:
|
90 |
+
print('TRCaption images used')
|
91 |
+
# Images taken from TRCAPTION
|
92 |
+
im_paths = trcap_urls
|
93 |
+
if image_embeddings is None:
|
94 |
+
print(f"First used memory {psutil.virtual_memory().used / float(1 << 30):,.0f} GB", )
|
95 |
+
text_embeddings = None
|
96 |
+
image_embeddings = load_image_embeddings()
|
97 |
+
print(f"First used memory {psutil.virtual_memory().used / float(1 << 30):,.0f} GB", )
|
98 |
+
f_image_embeddings = image_embeddings
|
99 |
+
else:
|
100 |
+
# Images taken from user
|
101 |
+
im_paths = [i.name for i in im1]
|
102 |
+
ims = [Image.open(i) for i in im_paths]
|
103 |
+
if use_trcap_texts:
|
104 |
+
random_indexes = random.sample(range(len(trcap_texts)), 2) # MAX 2 text are allowed in image retrieval UI limit
|
105 |
+
f_texts_embeddings = []
|
106 |
+
for i in random_indexes:
|
107 |
+
f_texts_embeddings.append(load_spesific_tensor(i, 'text'))
|
108 |
+
f_texts_embeddings = torch.stack(f_texts_embeddings)
|
109 |
+
texts = [trcap_texts[i] for i in random_indexes]
|
110 |
+
else:
|
111 |
+
texts = [i.trim() for i in text1.split('\n')[:2] if i.trim() != '']
|
112 |
+
|
113 |
+
per_mode_indices, per_mode_probs = trclip.get_results(texts=texts, images=ims, text_features=f_texts_embeddings, image_features=f_image_embeddings, mode='per_text')
|
114 |
+
|
115 |
+
print(f'per_mode_indices = {per_mode_indices}\n,per_mode_probs = {per_mode_probs} ')
|
116 |
+
print(f'im_paths = {im_paths}')
|
117 |
+
return image_retrieval_visualize(per_mode_indices, per_mode_probs, texts, im_paths,
|
118 |
+
n_figure_in_column=2,
|
119 |
+
n_images_in_figure=4, n_figure_in_row=1, save_fig=False,
|
120 |
+
show=False,
|
121 |
+
break_on_index=-1)
|
122 |
+
|
123 |
+
|
124 |
+
def run_text(im1, use_trcap_images, text1, use_trcap_texts):
|
125 |
+
f_texts_embeddings = None
|
126 |
+
f_image_embeddings = None
|
127 |
+
global image_embeddings
|
128 |
+
global text_embeddings
|
129 |
+
ims = None
|
130 |
+
if use_trcap_images:
|
131 |
+
random_indexes = random.sample(range(len(trcap_urls)), 2) # MAX 2 text are allowed in image retrieval UI limit
|
132 |
+
f_image_embeddings = []
|
133 |
+
for i in random_indexes:
|
134 |
+
f_image_embeddings.append(load_spesific_tensor(i, 'image'))
|
135 |
+
f_image_embeddings = torch.stack(f_image_embeddings)
|
136 |
+
print('TRCaption images used')
|
137 |
+
# Images taken from TRCAPTION
|
138 |
+
im_paths = [trcap_urls[i] for i in random_indexes]
|
139 |
+
else:
|
140 |
+
# Images taken from user
|
141 |
+
im_paths = [i.name for i in im1[:2]]
|
142 |
+
ims = [Image.open(i) for i in im_paths]
|
143 |
+
|
144 |
+
if use_trcap_texts:
|
145 |
+
if text_embeddings is None:
|
146 |
+
print(f"Used memory {psutil.virtual_memory().used / float(1 << 30):,.0f} GB", )
|
147 |
+
image_embeddings = None
|
148 |
+
print(f"Image embd deleted used memory {psutil.virtual_memory().used / float(1 << 30):,.0f} GB", )
|
149 |
+
text_embeddings = load_text_embeddings()
|
150 |
+
print(f"Text embed used memory {psutil.virtual_memory().used / float(1 << 30):,.0f} GB", )
|
151 |
+
|
152 |
+
f_texts_embeddings = text_embeddings
|
153 |
+
texts = trcap_texts
|
154 |
+
else:
|
155 |
+
texts = [i.trim() for i in text1.split('\n') if i.trim() != '']
|
156 |
+
|
157 |
+
per_mode_indices, per_mode_probs = trclip.get_results(texts=texts, images=ims, image_features=f_image_embeddings, text_features=f_texts_embeddings, mode='per_image')
|
158 |
+
print(per_mode_indices)
|
159 |
+
print(per_mode_probs)
|
160 |
+
return text_retrieval_visualize(per_mode_indices, per_mode_probs, im_paths, texts,
|
161 |
+
n_figure_in_column=4,
|
162 |
+
n_texts_in_figure=4 if len(texts) > 4 else len(texts),
|
163 |
+
n_figure_in_row=2,
|
164 |
+
save_fig=False,
|
165 |
+
show=False,
|
166 |
+
break_on_index=-1,
|
167 |
+
)
|
168 |
+
|
169 |
+
|
170 |
+
def change_textbox(choice):
|
171 |
+
if choice == "Use Own Images":
|
172 |
+
|
173 |
+
return gr.Image.update(visible=True)
|
174 |
+
else:
|
175 |
+
return gr.Image.update(visible=False)
|
176 |
+
|
177 |
+
|
178 |
+
with gr.Blocks() as demo:
|
179 |
+
gr.HTML("""
|
180 |
+
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
|
181 |
+
<div
|
182 |
+
style="
|
183 |
+
display: inline-flex;
|
184 |
+
align-items: center;
|
185 |
+
gap: 0.8rem;
|
186 |
+
font-size: 1.75rem;
|
187 |
+
"
|
188 |
+
>
|
189 |
+
<svg
|
190 |
+
width="0.65em"
|
191 |
+
height="0.65em"
|
192 |
+
viewBox="0 0 115 115"
|
193 |
+
fill="none"
|
194 |
+
xmlns="http://www.w3.org/2000/svg"
|
195 |
+
>
|
196 |
+
<rect width="23" height="23" fill="white"></rect>
|
197 |
+
<rect y="69" width="23" height="23" fill="white"></rect>
|
198 |
+
<rect x="23" width="23" height="23" fill="#AEAEAE"></rect>
|
199 |
+
<rect x="23" y="69" width="23" height="23" fill="#AEAEAE"></rect>
|
200 |
+
<rect x="46" width="23" height="23" fill="white"></rect>
|
201 |
+
<rect x="46" y="69" width="23" height="23" fill="white"></rect>
|
202 |
+
<rect x="69" width="23" height="23" fill="black"></rect>
|
203 |
+
<rect x="69" y="69" width="23" height="23" fill="black"></rect>
|
204 |
+
<rect x="92" width="23" height="23" fill="#D9D9D9"></rect>
|
205 |
+
<rect x="92" y="69" width="23" height="23" fill="#AEAEAE"></rect>
|
206 |
+
<rect x="115" y="46" width="23" height="23" fill="white"></rect>
|
207 |
+
<rect x="115" y="115" width="23" height="23" fill="white"></rect>
|
208 |
+
<rect x="115" y="69" width="23" height="23" fill="#D9D9D9"></rect>
|
209 |
+
<rect x="92" y="46" width="23" height="23" fill="#AEAEAE"></rect>
|
210 |
+
<rect x="92" y="115" width="23" height="23" fill="#AEAEAE"></rect>
|
211 |
+
<rect x="92" y="69" width="23" height="23" fill="white"></rect>
|
212 |
+
<rect x="69" y="46" width="23" height="23" fill="white"></rect>
|
213 |
+
<rect x="69" y="115" width="23" height="23" fill="white"></rect>
|
214 |
+
<rect x="69" y="69" width="23" height="23" fill="#D9D9D9"></rect>
|
215 |
+
<rect x="46" y="46" width="23" height="23" fill="black"></rect>
|
216 |
+
<rect x="46" y="115" width="23" height="23" fill="black"></rect>
|
217 |
+
<rect x="46" y="69" width="23" height="23" fill="black"></rect>
|
218 |
+
<rect x="23" y="46" width="23" height="23" fill="#D9D9D9"></rect>
|
219 |
+
<rect x="23" y="115" width="23" height="23" fill="#AEAEAE"></rect>
|
220 |
+
<rect x="23" y="69" width="23" height="23" fill="black"></rect>
|
221 |
+
</svg>
|
222 |
+
<h1 style="font-weight: 900; margin-bottom: 7px;">
|
223 |
+
Trclip Demo
|
224 |
+
<a
|
225 |
+
href="https://github.com/yusufani/TrCLIP"
|
226 |
+
style="text-decoration: underline;"
|
227 |
+
target="_blank"
|
228 |
+
></a
|
229 |
+
Github Trclip:
|
230 |
+
</h1>
|
231 |
+
</div>
|
232 |
+
<p style="margin-bottom: 10px; font-size: 94%">
|
233 |
+
Trclip is Turkish port of real clip. In this space you can try your images or/and texts.
|
234 |
+
Also you can use pre calculated TrCaption embeddings.
|
235 |
+
Number of texts = 3533312
|
236 |
+
Number of images = 3070976
|
237 |
+
|
238 |
+
>
|
239 |
+
</p>
|
240 |
+
</div>
|
241 |
+
""")
|
242 |
+
|
243 |
+
with gr.Tabs():
|
244 |
+
with gr.TabItem("Use Own Images"):
|
245 |
+
im_input = gr.components.File(label="Image input", optional=True, file_count='multiple')
|
246 |
+
is_trcap_ims = gr.Checkbox(label="Use TRCaption Images\nNote: ( Random 2 sample selected in text retrieval mode )")
|
247 |
+
|
248 |
+
with gr.Tabs():
|
249 |
+
with gr.TabItem("Input a text (Seperated by new line Max 2 for Image retrieval)"):
|
250 |
+
text_input = gr.components.Textbox(label="Text input", optional=True)
|
251 |
+
is_trcap_texts = gr.Checkbox(label="Use TrCaption Captions \nNote: ( Random 2 sample selected in image retrieval mode")
|
252 |
+
|
253 |
+
im_ret_but = gr.Button("Image Retrieval")
|
254 |
+
text_ret_but = gr.Button("Text Retrieval")
|
255 |
+
|
256 |
+
im_out = gr.components.Image()
|
257 |
+
|
258 |
+
im_ret_but.click(run_im, inputs=[im_input, is_trcap_ims, text_input, is_trcap_texts], outputs=im_out)
|
259 |
+
text_ret_but.click(run_text, inputs=[im_input, is_trcap_ims, text_input, is_trcap_texts], outputs=im_out)
|
260 |
+
|
261 |
+
demo.launch()
|
262 |
+
|
263 |
+
# %%
|
not-found.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ftfy
|
2 |
+
regex
|
3 |
+
tqdm
|
4 |
+
omegaconf
|
5 |
+
pytorch-lightning
|
6 |
+
kornia
|
7 |
+
imageio-ffmpeg
|
8 |
+
einops
|
9 |
+
torch
|
10 |
+
torchvision
|
11 |
+
Pillow
|
12 |
+
numpy
|
13 |
+
imageio
|
14 |
+
trclip
|
15 |
+
torch>= 0.7
|
16 |
+
transformers>=4
|
17 |
+
numpy>=1.20
|
18 |
+
git+https://github.com/openai/CLIP.git
|
19 |
+
tqdm
|
20 |
+
more_itertools
|
21 |
+
cairosvg
|
22 |
+
gradio==3.0.19
|
23 |
+
gdown
|
24 |
+
psutil
|