Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,27 @@
|
|
1 |
-
import nltk
|
2 |
-
from nltk.tokenize import word_tokenize
|
3 |
import streamlit as st
|
4 |
-
|
5 |
-
|
6 |
|
7 |
-
#
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
def detect_bad_words(text, bad_words):
|
12 |
-
# Metni küçük harflere dönüştür ve tokenize et
|
13 |
-
words = word_tokenize(text.lower())
|
14 |
-
|
15 |
-
# Kötü kelimeleri tespit et
|
16 |
-
detected_bad_words = [word for word in words if word in bad_words]
|
17 |
-
|
18 |
-
return detected_bad_words
|
19 |
|
20 |
-
|
21 |
-
user_text = st.text_area("Lütfen metni girin: ")
|
22 |
-
detected_words = detect_bad_words(user_text, bad_words)
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
|
5 |
+
# Load the model and tokenizer
|
6 |
+
@st.cache_resource
|
7 |
+
def load_model():
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("01-ai/Yi-6B-Chat")
|
9 |
+
model = AutoModelForCausalLM.from_pretrained("01-ai/Yi-6B-Chat")
|
10 |
+
return tokenizer, model
|
11 |
|
12 |
+
tokenizer, model = load_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
st.title("Chat with AI")
|
|
|
|
|
15 |
|
16 |
+
# User input
|
17 |
+
user_input = st.text_input("You: ", "Hello, how are you?")
|
18 |
+
|
19 |
+
if user_input:
|
20 |
+
# Tokenize input and generate response
|
21 |
+
inputs = tokenizer(user_input, return_tensors="pt")
|
22 |
+
with torch.no_grad():
|
23 |
+
outputs = model.generate(inputs.input_ids, max_length=50, num_return_sequences=1)
|
24 |
+
|
25 |
+
# Decode and display the response
|
26 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
27 |
+
st.write(f"AI: {response}")
|