OCRLLM / app.py
yuragoithf's picture
Update app.py
217a758 verified
import os
import tempfile
from hezar.models import Model
from hezar.utils import load_image, draw_boxes
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
import gradio as gr
import numpy as np
from PIL import Image
import io
# Load models on CPU (Hugging Face Spaces default)
craft_model = Model.load("hezarai/CRAFT", device="cpu")
processor = TrOCRProcessor.from_pretrained('microsoft/trocr-base-handwritten')
trocr_model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-base-handwritten')
def recognize_handwritten_text(image):
try:
# Ensure image is a PIL image and convert to a compatible format
if not isinstance(image, Image.Image):
image = Image.fromarray(np.array(image)).convert("RGB")
# Save the uploaded image to a temporary file in JPEG format
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp_file:
image.save(tmp_file.name, format="JPEG")
tmp_path = tmp_file.name
# Load image with hezar utils using file path
processed_image = load_image(tmp_path)
# Ensure processed_image is in a compatible format (convert to NumPy if needed)
if not isinstance(processed_image, np.ndarray):
processed_image = np.array(Image.open(tmp_path))
# Detect text regions with CRAFT
outputs = craft_model.predict(processed_image)
if not outputs or "boxes" not in outputs[0]:
return Image.fromarray(processed_image), "No text detected"
boxes = outputs[0]["boxes"]
print(f"Debug: Boxes structure = {boxes}") # Log the exact structure
pil_image = Image.fromarray(processed_image)
texts = []
# Handle box format (assuming [x, y, width, height] or [[x1, y1], [x2, y2]])
for box in boxes:
if len(box) == 4: # [x, y, width, height]
x, y, width, height = box
x_min, y_min = x, y
x_max, y_max = x + width, y + height
elif len(box) == 2 and all(len(p) == 2 for p in box): # [[x1, y1], [x2, y2]]
x1, y1 = box[0]
x2, y2 = box[1]
x_min, y_min = min(x1, x2), min(y1, y2)
x_max, y_max = max(x1, x2), max(y1, y2)
else:
print(f"Debug: Skipping invalid box {box}") # Log invalid boxes
continue
crop = pil_image.crop((x_min, y_min, x_max, y_max))
pixel_values = processor(images=crop, return_tensors="pt").pixel_values
generated_ids = trocr_model.generate(pixel_values)
text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
texts.append(text)
# Draw boxes on the image
result_image = draw_boxes(processed_image, boxes)
result_pil = Image.fromarray(result_image)
# Join recognized texts
text_data = " ".join(texts) if texts else "No text recognized"
return result_pil, f"Recognized text: {text_data}"
except Exception as e:
return Image.fromarray(np.array(image)), f"Error: {str(e)}"
finally:
# Clean up temporary file
if 'tmp_path' in locals():
os.unlink(tmp_path)
# Create Gradio interface
interface = gr.Interface(
fn=recognize_handwritten_text,
inputs=gr.Image(type="pil", label="Upload any image format"),
outputs=[gr.Image(type="pil", label="Detected Text Image"), gr.Text(label="Recognized Text")],
title="Handwritten Text Detection and Recognition",
description="Upload an image in any format (JPEG, PNG, BMP, etc.) to detect and recognize handwritten text."
)
# Launch the app
interface.launch()