Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,19 @@
|
|
1 |
import tensorflow as tf
|
2 |
-
inception_net = tf.keras.applications.MobileNetV2()
|
3 |
|
4 |
|
5 |
import requests
|
6 |
|
7 |
# Download human-readable labels for ImageNet.
|
8 |
-
response = requests.get("https://git.io/JJkYN")
|
9 |
-
labels = response.text.split("\n")
|
|
|
|
|
10 |
|
11 |
def classify_image(inp):
|
12 |
inp = inp.reshape((-1, 224, 224, 3))
|
13 |
-
inp =
|
14 |
-
prediction =
|
15 |
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
|
16 |
return confidences
|
17 |
|
@@ -20,4 +22,4 @@ import gradio as gr
|
|
20 |
|
21 |
gr.Interface(fn=classify_image,
|
22 |
inputs=gr.Image(shape=(224, 224)),
|
23 |
-
outputs=gr.Label(num_top_classes=
|
|
|
1 |
import tensorflow as tf
|
2 |
+
#inception_net = tf.keras.applications.MobileNetV2()
|
3 |
|
4 |
|
5 |
import requests
|
6 |
|
7 |
# Download human-readable labels for ImageNet.
|
8 |
+
#response = requests.get("https://git.io/JJkYN")
|
9 |
+
#labels = response.text.split("\n")
|
10 |
+
|
11 |
+
model.load("./Pikachu_and_Raichu.h5")
|
12 |
|
13 |
def classify_image(inp):
|
14 |
inp = inp.reshape((-1, 224, 224, 3))
|
15 |
+
inp = model(inp)
|
16 |
+
prediction = model(inp).flatten()
|
17 |
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
|
18 |
return confidences
|
19 |
|
|
|
22 |
|
23 |
gr.Interface(fn=classify_image,
|
24 |
inputs=gr.Image(shape=(224, 224)),
|
25 |
+
outputs=gr.Label(num_top_classes=2)).launch()
|