|
from tensorflow.keras.models import load_model |
|
import gradio as gr |
|
from PIL import Image |
|
import numpy as np |
|
|
|
model = load_model('Pikachu_and_Raichu.h5') |
|
|
|
class_names = ['Pikachu', 'Raichu'] |
|
|
|
def predict(img): |
|
img=img.reshape(160,160,3) |
|
"""images_list = [] |
|
images_list.append(np.array(img)) |
|
x = np.asarray(images_list)""" |
|
prediction = model.predict(img)[0] |
|
return {class_names[i]: float(prediction[i]) for i in range(len(class_names))} |
|
|
|
image = gr.inputs.Image(shape=(160, 160)) |
|
label = gr.outputs.Label(num_top_classes=2) |
|
|
|
gr.Interface(fn=predict, inputs=image, title="Garbage Classifier", |
|
description="This is a Garbage Classification Model Trained using Dataset 11 by Sud.Deployed to Hugging Faces using Gradio.",outputs=label,interpretation='default').launch(debug=True,enable_queue=True) |