Spaces:
Sleeping
Sleeping
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from functools import partial | |
from typing import List, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from sam2.modeling.backbones.utils import ( | |
PatchEmbed, | |
window_partition, | |
window_unpartition, | |
) | |
from sam2.modeling.sam2_utils import MLP, DropPath | |
def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor: | |
if pool is None: | |
return x | |
# (B, H, W, C) -> (B, C, H, W) | |
x = x.permute(0, 3, 1, 2) | |
x = pool(x) | |
# (B, C, H', W') -> (B, H', W', C) | |
x = x.permute(0, 2, 3, 1) | |
if norm: | |
x = norm(x) | |
return x | |
class MultiScaleAttention(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
dim_out: int, | |
num_heads: int, | |
q_pool: nn.Module = None, | |
): | |
super().__init__() | |
self.dim = dim | |
self.dim_out = dim_out | |
self.num_heads = num_heads | |
head_dim = dim_out // num_heads | |
self.scale = head_dim**-0.5 | |
self.q_pool = q_pool | |
self.qkv = nn.Linear(dim, dim_out * 3) | |
self.proj = nn.Linear(dim_out, dim_out) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
B, H, W, _ = x.shape | |
# qkv with shape (B, H * W, 3, nHead, C) | |
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1) | |
# q, k, v with shape (B, H * W, nheads, C) | |
q, k, v = torch.unbind(qkv, 2) | |
# Q pooling (for downsample at stage changes) | |
if self.q_pool: | |
q = do_pool(q.reshape(B, H, W, -1), self.q_pool) | |
H, W = q.shape[1:3] # downsampled shape | |
q = q.reshape(B, H * W, self.num_heads, -1) | |
# Torch's SDPA expects [B, nheads, H*W, C] so we transpose | |
x = F.scaled_dot_product_attention( | |
q.transpose(1, 2), | |
k.transpose(1, 2), | |
v.transpose(1, 2), | |
) | |
# Transpose back | |
x = x.transpose(1, 2) | |
x = x.reshape(B, H, W, -1) | |
x = self.proj(x) | |
return x | |
class MultiScaleBlock(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
dim_out: int, | |
num_heads: int, | |
mlp_ratio: float = 4.0, | |
drop_path: float = 0.0, | |
norm_layer: Union[nn.Module, str] = "LayerNorm", | |
q_stride: Tuple[int, int] = None, | |
act_layer: nn.Module = nn.GELU, | |
window_size: int = 0, | |
): | |
super().__init__() | |
if isinstance(norm_layer, str): | |
norm_layer = partial(getattr(nn, norm_layer), eps=1e-6) | |
self.dim = dim | |
self.dim_out = dim_out | |
self.norm1 = norm_layer(dim) | |
self.window_size = window_size | |
self.pool, self.q_stride = None, q_stride | |
if self.q_stride: | |
self.pool = nn.MaxPool2d( | |
kernel_size=q_stride, stride=q_stride, ceil_mode=False | |
) | |
self.attn = MultiScaleAttention( | |
dim, | |
dim_out, | |
num_heads=num_heads, | |
q_pool=self.pool, | |
) | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.norm2 = norm_layer(dim_out) | |
self.mlp = MLP( | |
dim_out, | |
int(dim_out * mlp_ratio), | |
dim_out, | |
num_layers=2, | |
activation=act_layer, | |
) | |
if dim != dim_out: | |
self.proj = nn.Linear(dim, dim_out) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
shortcut = x # B, H, W, C | |
x = self.norm1(x) | |
# Skip connection | |
if self.dim != self.dim_out: | |
shortcut = do_pool(self.proj(x), self.pool) | |
# Window partition | |
window_size = self.window_size | |
if window_size > 0: | |
H, W = x.shape[1], x.shape[2] | |
x, pad_hw = window_partition(x, window_size) | |
# Window Attention + Q Pooling (if stage change) | |
x = self.attn(x) | |
if self.q_stride: | |
# Shapes have changed due to Q pooling | |
window_size = self.window_size // self.q_stride[0] | |
H, W = shortcut.shape[1:3] | |
pad_h = (window_size - H % window_size) % window_size | |
pad_w = (window_size - W % window_size) % window_size | |
pad_hw = (H + pad_h, W + pad_w) | |
# Reverse window partition | |
if self.window_size > 0: | |
x = window_unpartition(x, window_size, pad_hw, (H, W)) | |
x = shortcut + self.drop_path(x) | |
# MLP | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class Hiera(nn.Module): | |
""" | |
Reference: https://arxiv.org/abs/2306.00989 | |
""" | |
def __init__( | |
self, | |
embed_dim: int = 96, # initial embed dim | |
num_heads: int = 1, # initial number of heads | |
drop_path_rate: float = 0.0, # stochastic depth | |
q_pool: int = 3, # number of q_pool stages | |
q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages | |
stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage | |
dim_mul: float = 2.0, # dim_mul factor at stage shift | |
head_mul: float = 2.0, # head_mul factor at stage shift | |
window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14), | |
# window size per stage, when not using global att. | |
window_spec: Tuple[int, ...] = ( | |
8, | |
4, | |
14, | |
7, | |
), | |
# global attn in these blocks | |
global_att_blocks: Tuple[int, ...] = ( | |
12, | |
16, | |
20, | |
), | |
return_interm_layers=True, # return feats from every stage | |
): | |
super().__init__() | |
assert len(stages) == len(window_spec) | |
self.window_spec = window_spec | |
depth = sum(stages) | |
self.q_stride = q_stride | |
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)] | |
assert 0 <= q_pool <= len(self.stage_ends[:-1]) | |
self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool] | |
self.return_interm_layers = return_interm_layers | |
self.patch_embed = PatchEmbed( | |
embed_dim=embed_dim, | |
) | |
# Which blocks have global att? | |
self.global_att_blocks = global_att_blocks | |
# Windowed positional embedding (https://arxiv.org/abs/2311.05613) | |
self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size | |
self.pos_embed = nn.Parameter( | |
torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size) | |
) | |
self.pos_embed_window = nn.Parameter( | |
torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0]) | |
) | |
dpr = [ | |
x.item() for x in torch.linspace(0, drop_path_rate, depth) | |
] # stochastic depth decay rule | |
cur_stage = 1 | |
self.blocks = nn.ModuleList() | |
for i in range(depth): | |
dim_out = embed_dim | |
# lags by a block, so first block of | |
# next stage uses an initial window size | |
# of previous stage and final window size of current stage | |
window_size = self.window_spec[cur_stage - 1] | |
if self.global_att_blocks is not None: | |
window_size = 0 if i in self.global_att_blocks else window_size | |
if i - 1 in self.stage_ends: | |
dim_out = int(embed_dim * dim_mul) | |
num_heads = int(num_heads * head_mul) | |
cur_stage += 1 | |
block = MultiScaleBlock( | |
dim=embed_dim, | |
dim_out=dim_out, | |
num_heads=num_heads, | |
drop_path=dpr[i], | |
q_stride=self.q_stride if i in self.q_pool_blocks else None, | |
window_size=window_size, | |
) | |
embed_dim = dim_out | |
self.blocks.append(block) | |
self.channel_list = ( | |
[self.blocks[i].dim_out for i in self.stage_ends[::-1]] | |
if return_interm_layers | |
else [self.blocks[-1].dim_out] | |
) | |
def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor: | |
h, w = hw | |
window_embed = self.pos_embed_window | |
pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic") | |
pos_embed = pos_embed + window_embed.tile( | |
[x // y for x, y in zip(pos_embed.shape, window_embed.shape)] | |
) | |
pos_embed = pos_embed.permute(0, 2, 3, 1) | |
return pos_embed | |
def forward(self, x: torch.Tensor) -> List[torch.Tensor]: | |
x = self.patch_embed(x) | |
# x: (B, H, W, C) | |
# Add pos embed | |
x = x + self._get_pos_embed(x.shape[1:3]) | |
outputs = [] | |
for i, blk in enumerate(self.blocks): | |
x = blk(x) | |
if (i == self.stage_ends[-1]) or ( | |
i in self.stage_ends and self.return_interm_layers | |
): | |
feats = x.permute(0, 3, 1, 2) | |
outputs.append(feats) | |
return outputs | |