Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import math | |
from typing import Any, Optional, Tuple | |
import numpy as np | |
import torch | |
from torch import nn | |
class PositionEmbeddingSine(nn.Module): | |
""" | |
This is a more standard version of the position embedding, very similar to the one | |
used by the Attention is all you need paper, generalized to work on images. | |
""" | |
def __init__( | |
self, | |
num_pos_feats, | |
temperature: int = 10000, | |
normalize: bool = True, | |
scale: Optional[float] = None, | |
): | |
super().__init__() | |
assert num_pos_feats % 2 == 0, "Expecting even model width" | |
self.num_pos_feats = num_pos_feats // 2 | |
self.temperature = temperature | |
self.normalize = normalize | |
if scale is not None and normalize is False: | |
raise ValueError("normalize should be True if scale is passed") | |
if scale is None: | |
scale = 2 * math.pi | |
self.scale = scale | |
self.cache = {} | |
def _encode_xy(self, x, y): | |
# The positions are expected to be normalized | |
assert len(x) == len(y) and x.ndim == y.ndim == 1 | |
x_embed = x * self.scale | |
y_embed = y * self.scale | |
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) | |
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) | |
pos_x = x_embed[:, None] / dim_t | |
pos_y = y_embed[:, None] / dim_t | |
pos_x = torch.stack( | |
(pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2 | |
).flatten(1) | |
pos_y = torch.stack( | |
(pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2 | |
).flatten(1) | |
return pos_x, pos_y | |
def encode_boxes(self, x, y, w, h): | |
pos_x, pos_y = self._encode_xy(x, y) | |
pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1) | |
return pos | |
encode = encode_boxes # Backwards compatibility | |
def encode_points(self, x, y, labels): | |
(bx, nx), (by, ny), (bl, nl) = x.shape, y.shape, labels.shape | |
assert bx == by and nx == ny and bx == bl and nx == nl | |
pos_x, pos_y = self._encode_xy(x.flatten(), y.flatten()) | |
pos_x, pos_y = pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1) | |
pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2) | |
return pos | |
def forward(self, x: torch.Tensor): | |
cache_key = (x.shape[-2], x.shape[-1]) | |
if cache_key in self.cache: | |
return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1) | |
y_embed = ( | |
torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device) | |
.view(1, -1, 1) | |
.repeat(x.shape[0], 1, x.shape[-1]) | |
) | |
x_embed = ( | |
torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device) | |
.view(1, 1, -1) | |
.repeat(x.shape[0], x.shape[-2], 1) | |
) | |
if self.normalize: | |
eps = 1e-6 | |
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale | |
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale | |
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) | |
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) | |
pos_x = x_embed[:, :, :, None] / dim_t | |
pos_y = y_embed[:, :, :, None] / dim_t | |
pos_x = torch.stack( | |
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 | |
).flatten(3) | |
pos_y = torch.stack( | |
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 | |
).flatten(3) | |
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) | |
self.cache[cache_key] = pos[0] | |
return pos | |
class PositionEmbeddingRandom(nn.Module): | |
""" | |
Positional encoding using random spatial frequencies. | |
""" | |
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None: | |
super().__init__() | |
if scale is None or scale <= 0.0: | |
scale = 1.0 | |
self.register_buffer( | |
"positional_encoding_gaussian_matrix", | |
scale * torch.randn((2, num_pos_feats)), | |
) | |
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: | |
"""Positionally encode points that are normalized to [0,1].""" | |
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape | |
coords = 2 * coords - 1 | |
coords = coords @ self.positional_encoding_gaussian_matrix | |
coords = 2 * np.pi * coords | |
# outputs d_1 x ... x d_n x C shape | |
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) | |
def forward(self, size: Tuple[int, int]) -> torch.Tensor: | |
"""Generate positional encoding for a grid of the specified size.""" | |
h, w = size | |
device: Any = self.positional_encoding_gaussian_matrix.device | |
grid = torch.ones((h, w), device=device, dtype=torch.float32) | |
y_embed = grid.cumsum(dim=0) - 0.5 | |
x_embed = grid.cumsum(dim=1) - 0.5 | |
y_embed = y_embed / h | |
x_embed = x_embed / w | |
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) | |
return pe.permute(2, 0, 1) # C x H x W | |
def forward_with_coords( | |
self, coords_input: torch.Tensor, image_size: Tuple[int, int] | |
) -> torch.Tensor: | |
"""Positionally encode points that are not normalized to [0,1].""" | |
coords = coords_input.clone() | |
coords[:, :, 0] = coords[:, :, 0] / image_size[1] | |
coords[:, :, 1] = coords[:, :, 1] / image_size[0] | |
return self._pe_encoding(coords.to(torch.float)) # B x N x C | |
# Rotary Positional Encoding, adapted from: | |
# 1. https://github.com/meta-llama/codellama/blob/main/llama/model.py | |
# 2. https://github.com/naver-ai/rope-vit | |
# 3. https://github.com/lucidrains/rotary-embedding-torch | |
def init_t_xy(end_x: int, end_y: int): | |
t = torch.arange(end_x * end_y, dtype=torch.float32) | |
t_x = (t % end_x).float() | |
t_y = torch.div(t, end_x, rounding_mode="floor").float() | |
return t_x, t_y | |
def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float = 10000.0): | |
freqs_x = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim)) | |
freqs_y = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim)) | |
t_x, t_y = init_t_xy(end_x, end_y) | |
freqs_x = torch.outer(t_x, freqs_x) | |
freqs_y = torch.outer(t_y, freqs_y) | |
freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x) | |
freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y) | |
return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1) | |
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): | |
ndim = x.ndim | |
assert 0 <= 1 < ndim | |
assert freqs_cis.shape == (x.shape[-2], x.shape[-1]) | |
shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)] | |
return freqs_cis.view(*shape) | |
def apply_rotary_enc( | |
xq: torch.Tensor, | |
xk: torch.Tensor, | |
freqs_cis: torch.Tensor, | |
repeat_freqs_k: bool = False, | |
): | |
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) | |
xk_ = ( | |
torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) | |
if xk.shape[-2] != 0 | |
else None | |
) | |
freqs_cis = reshape_for_broadcast(freqs_cis, xq_) | |
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) | |
if xk_ is None: | |
# no keys to rotate, due to dropout | |
return xq_out.type_as(xq).to(xq.device), xk | |
# repeat freqs along seq_len dim to match k seq_len | |
if repeat_freqs_k: | |
r = xk_.shape[-2] // xq_.shape[-2] | |
freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1) | |
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) | |
return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device) | |