yunusserhat's picture
Upload 40 files
94f372a verified
import os
import numpy as np
import reverse_geocoder
def get_loc(x):
location = reverse_geocoder.search(x[0].tolist())[0]
country = location.get("cc", "")
region = location.get("admin1", "")
sub_region = location.get("admin2", "")
city = location.get("name", "")
a = country if country != "" else None
b, c, d = None, None, None
if a is not None:
b = country + "," + region if region != "" else None
if b is not None:
c = country + "," + region + "," + sub_region if sub_region != "" else None
d = (
country + "," + region + "," + sub_region + "," + city
if city != ""
else None
)
return a, b, c, d
def get_match_values(pred, gt, N, pos):
xa, xb, xc, xd = get_loc(gt)
ya, yb, yc, yd = get_loc(pred)
if xa is not None:
N["country"] += 1
if xa == ya:
pos["country"] += 1
if xb is not None:
N["region"] += 1
if xb == yb:
pos["region"] += 1
if xc is not None:
N["sub-region"] += 1
if xc == yc:
pos["sub-region"] += 1
if xd is not None:
N["city"] += 1
if xd == yd:
pos["city"] += 1
def compute_print_accuracy(N, pos):
for k in N.keys():
pos[k] /= N[k]
# pretty-print accuracy in percentage with 2 floating points
print(
f'Accuracy: {pos["country"]*100.0:.2f} (country), {pos["region"]*100.0:.2f} (region), {pos["sub-region"]*100.0:.2f} (sub-region), {pos["city"]*100.0:.2f} (city)'
)
print(
f'Haversine: {pos["haversine"]:.2f} (haversine), {pos["geoguessr"]:.2f} (geoguessr)'
)
def get_filenames(idx):
from autofaiss import build_index
path = join(args.features_parent, f"features-{idx}/")
files = [f for f in os.listdir(path)]
full_files = [join(path, f) for f in os.listdir(path)]
index = build_index(
embeddings=np.concatenate([np.load(f) for f in tqdm(full_files)], axis=0),
nb_cores=12,
save_on_disk=False,
)[0]
return index, files
def normalize(x):
lat, lon = x[:, 0], x[:, 1]
"""Used to put all lat lon inside ±90 and ±180."""
lat = (lat + 90) % 360 - 90
if lat > 90:
lat = 180 - lat
lon += 180
lon = (lon + 180) % 360 - 180
return np.stack([lat, lon], axis=1)
def haversine(pred, gt, N, p):
# expects inputs to be np arrays in (lat, lon) format as radians
# N x 2
pred = np.radians(normalize(pred))
gt = np.radians(normalize(gt))
# calculate the difference in latitude and longitude between the predicted and ground truth points
lat_diff = pred[:, 0] - gt[:, 0]
lon_diff = pred[:, 1] - gt[:, 1]
# calculate the haversine formula components
lhs = np.sin(lat_diff / 2) ** 2
rhs = np.cos(pred[:, 0]) * np.cos(gt[:, 0]) * np.sin(lon_diff / 2) ** 2
a = lhs + rhs
# calculate the final distance using the haversine formula
c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1 - a))
haversine_distance = 6371 * c[0]
geoguessr_sum = 5000 * np.exp(-haversine_distance / 1492.7)
N["geoguessr"] += 1
p["geoguessr"] += geoguessr_sum
N["haversine"] += 1
p["haversine"] += haversine_distance