Spaces:
Running
Running
import sys, os | |
import json | |
from PIL import Image | |
from tqdm import tqdm | |
from os.path import dirname, join | |
sys.path.append(dirname(dirname(__file__))) | |
import torch | |
from transformers import AutoImageProcessor, AutoModel | |
from transformers import CLIPProcessor, CLIPModel | |
from transformers import pipeline | |
from data.data import osv5m | |
from json_stream import streamable_list | |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def load_model_clip(): | |
model = CLIPModel.from_pretrained("laion/CLIP-ViT-L-14-laion2B-s32B-b82K") | |
processor = CLIPProcessor.from_pretrained("laion/CLIP-ViT-L-14-laion2B-s32B-b82K") | |
return processor, model.to(DEVICE) | |
def load_model_dino(): | |
model = AutoModel.from_pretrained("facebook/dinov2-base") | |
processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base") | |
return processor, model.to(DEVICE) | |
def compute_dino(processor, model, x): | |
inputs = processor(images=x[0], return_tensors="pt", device=DEVICE).to(DEVICE) | |
outputs = model(**inputs) | |
last_hidden_states = outputs.last_hidden_state.cpu().numpy() | |
for i in range(len(x[0])): | |
yield [last_hidden_states[i].tolist(), x[1][i], x[2][i], x[3][i]] | |
def compute_clip(processor, model, x): | |
inputs = processor(images=x[0], return_tensors="pt", device=DEVICE).to(DEVICE) | |
features = model.get_image_features(**inputs) | |
features /= features.norm(dim=-1, keepdim=True) | |
features = features.cpu().numpy() | |
for i in range(len(x[0])): | |
yield [features[i].tolist(), x[1][i], x[2][i], x[3][i]] | |
def get_batch(dataset, batch_size): | |
data, lats, lons, ids = [], [], [], [] | |
for i in range(len(dataset)): | |
id, lat, lon = dataset.df.iloc[i] | |
data.append(Image.open(join(dataset.image_folder, f"{int(id)}.jpg"))) | |
lats.append(lat) | |
lons.append(lon) | |
ids.append(id) | |
if len(data) == batch_size: | |
yield data, lats, lons, ids | |
data, lats, lons, ids = [], [], [], [] | |
if len(data) > 0: | |
yield data, lats, lons, ids | |
data, lats, lons, ids = [], [], [], [] | |
if __name__ == "__main__": | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--batch_size", type=int, default=256) | |
parser.add_argument("--compute_features", action="store_true") | |
parser.add_argument("--compute_nearest", action="store_true") | |
parser.add_argument("--json_path", default="features") | |
parser.add_argument("--which", type=str, default="clip", choices=["clip", "dino"]) | |
args = parser.parse_args() | |
json_path = join(args.json_path, args.which) | |
os.makedirs(json_path, exist_ok=True) | |
if args.compute_features: | |
processor, model = ( | |
load_model_clip() if args.which == "clip" else load_model_dino() | |
) | |
compute_fn = compute_clip if args.which == "clip" else compute_dino | |
for split in ["test"]: #'train', | |
# open existing json and read as dictionary | |
json_path_ = join(json_path, f"{split}.json") | |
dataset = osv5m( | |
"datasets/osv5m", transforms=None, split=split, dont_split=True | |
) | |
def compute(batch_size): | |
for data in tqdm( | |
get_batch(dataset, batch_size), | |
total=len(dataset) // batch_size, | |
desc=f"Computing {split} on {args.which}", | |
): | |
features = compute_fn(processor, model, data) | |
for feature, lat, lon, id in features: | |
yield feature, lat, lon, id | |
data = streamable_list(compute(args.batch_size)) | |
json.dump(data, open(json_path_, "w"), indent=4) | |
if args.compute_nearest: | |
from sklearn.metrics.pairwise import cosine_similarity | |
import numpy as np | |
train, test = [ | |
json.load(open(join(json_path, f"{split}.json"), "r")) | |
for split in ["train", "test"] | |
] | |
def get_neighbors(k=10): | |
for i, test_data in enumerate(tqdm(test)): | |
feature, lat, lon, id = test_data | |
features_train = np.stack( | |
[np.array(train_data[0]) for train_data in train] | |
) | |
cs = np.squeeze( | |
cosine_similarity(np.expand_dims(feature, axis=0), features_train), | |
axis=0, | |
) | |
i = np.argsort(cs)[-k:][::-1].tolist() | |
yield [ | |
{n: x} | |
for idx in i | |
for n, x in zip( | |
["feature", "lat", "lon", "id", "distance"], | |
train[idx] | |
+ [ | |
cs[idx], | |
], | |
) | |
] | |
data = streamable_list(get_neighbors()) | |
json.dump(data, open(join(json_path, "nearest.json"), "w"), indent=4) | |