Spaces:
Running
Running
import hydra | |
import torch | |
import numpy as np | |
import pandas as pd | |
import statistics | |
from os.path import join, dirname | |
import matplotlib.pyplot as plt | |
class QuadTree(object): | |
def __init__(self, data, id="", depth=3, do_split=5000): | |
self.id = id | |
self.data = data | |
coord = data[["latitude", "longitude"]].to_numpy() | |
# if mins is None: | |
mins = coord.min(0) | |
# if maxs is None: | |
maxs = coord.max(0) | |
self.mins = np.asarray(mins) | |
self.maxs = np.asarray(maxs) | |
self.sizes = self.maxs - self.mins | |
self.children = [] | |
# sort by latitude | |
sorted_data_lat = sorted(coord, key=lambda point: point[0]) | |
# get the median lat | |
median_lat = statistics.median(point[0] for point in sorted_data_lat) | |
# Divide the cell into two half-cells based on the median lat | |
data_left = [point for point in sorted_data_lat if point[0] <= median_lat] | |
data_right = [point for point in sorted_data_lat if point[0] > median_lat] | |
# Sort the data points by long in each half-cell | |
sorted_data_left_lon = sorted(data_left, key=lambda point: point[1]) | |
sorted_data_right_lon = sorted(data_right, key=lambda point: point[1]) | |
# Calculate the median ylong coordinate in each half-cell | |
median_lon_left = statistics.median(point[1] for point in sorted_data_left_lon) | |
median_lon_right = statistics.median( | |
point[1] for point in sorted_data_right_lon | |
) | |
if (depth > 0) and (len(self.data) >= do_split): | |
# split the data into four quadrants | |
data_q1 = data[ | |
(data["latitude"] < median_lat) & (data["longitude"] < median_lon_left) | |
] | |
data_q2 = data[ | |
(data["latitude"] < median_lat) & (data["longitude"] >= median_lon_left) | |
] | |
data_q3 = data[ | |
(data["latitude"] >= median_lat) | |
& (data["longitude"] < median_lon_right) | |
] | |
data_q4 = data[ | |
(data["latitude"] >= median_lat) | |
& (data["longitude"] >= median_lon_right) | |
] | |
# recursively build a quad tree on each quadrant which has data | |
if data_q1.shape[0] > 0: | |
self.children.append( | |
QuadTree( | |
data_q1, | |
id + "0", | |
depth - 1, | |
do_split=do_split, | |
) | |
) | |
if data_q2.shape[0] > 0: | |
self.children.append( | |
QuadTree( | |
data_q2, | |
id + "1", | |
depth - 1, | |
do_split=do_split, | |
) | |
) | |
if data_q3.shape[0] > 0: | |
self.children.append( | |
QuadTree( | |
data_q3, | |
id + "2", | |
depth - 1, | |
do_split=do_split, | |
) | |
) | |
if data_q4.shape[0] > 0: | |
self.children.append( | |
QuadTree( | |
data_q4, | |
id + "3", | |
depth - 1, | |
do_split=do_split, | |
) | |
) | |
def unwrap(self): | |
if len(self.children) == 0: | |
return {self.id: [self.mins, self.maxs, self.data.copy()]} | |
else: | |
d = dict() | |
for child in self.children: | |
d.update(child.unwrap()) | |
return d | |
def extract(qt, name_new_column): | |
cluster = qt.unwrap() | |
boundaries, data = {}, [] | |
for i, (id, vs) in zip(np.arange(len(cluster)), cluster.items()): | |
(min_lat, min_lon), (max_lat, max_lon), points = vs | |
points[name_new_column] = int(i) | |
data.append(points) | |
boundaries[i] = ( | |
float(min_lat), | |
float(min_lon), | |
float(max_lat), | |
float(max_lon), | |
points["latitude"].mean(), | |
points["longitude"].mean(), | |
) | |
data = pd.concat(data) | |
return boundaries, data | |
def vizu(name_new_column, df_train, boundaries, do_split): | |
plt.hist(df_train[name_new_column], bins=len(boundaries)) | |
plt.xlabel("Cluster ID") | |
plt.ylabel("Number of images") | |
plt.title("Cluster distribution") | |
plt.yscale("log") | |
plt.ylim(10, do_split) | |
plt.savefig(f"{name_new_column}_distrib.png") | |
plt.clf() | |
plt.scatter( | |
df_train["longitude"].to_numpy(), | |
df_train["latitude"].to_numpy(), | |
c=np.random.permutation(len(boundaries))[df_train[name_new_column].to_numpy()], | |
cmap="tab20", | |
s=0.1, | |
alpha=0.5, | |
) | |
plt.xlabel("Longitude") | |
plt.ylabel("Latitude") | |
plt.title("Quadtree map") | |
plt.savefig(f"{name_new_column}_map.png") | |
def main(cfg): | |
data_path = join(cfg.data_dir, "osv5m") | |
name_new_column = f"adaptive_quadtree_{cfg.depth}_{cfg.do_split}" | |
# Create clusters from train images | |
train_fp = join(data_path, f"train.csv") | |
df_train = pd.read_csv(train_fp) | |
qt = QuadTree(df_train, depth=cfg.depth, do_split=cfg.do_split) | |
boundaries, df_train = extract(qt, name_new_column) | |
vizu(name_new_column, df_train, boundaries, cfg.do_split) | |
# Save clusters | |
boundaries = pd.DataFrame.from_dict( | |
boundaries, | |
orient="index", | |
columns=["min_lat", "min_lon", "max_lat", "max_lon", "mean_lat", "mean_lon"], | |
) | |
boundaries.to_csv(f"{name_new_column}.csv", index_label="cluster_id") | |
# Assign test images to clusters | |
test_fp = join(data_path, f"test.csv") | |
df_test = pd.read_csv(test_fp) | |
above_lat = np.expand_dims(df_test["latitude"].to_numpy(), -1) > np.expand_dims( | |
boundaries["min_lat"].to_numpy(), 0 | |
) | |
below_lat = np.expand_dims(df_test["latitude"].to_numpy(), -1) < np.expand_dims( | |
boundaries["max_lat"].to_numpy(), 0 | |
) | |
above_lon = np.expand_dims(df_test["longitude"].to_numpy(), -1) > np.expand_dims( | |
boundaries["min_lon"].to_numpy(), 0 | |
) | |
below_lon = np.expand_dims(df_test["longitude"].to_numpy(), -1) < np.expand_dims( | |
boundaries["max_lon"].to_numpy(), 0 | |
) | |
mask = np.logical_and( | |
np.logical_and(above_lat, below_lat), np.logical_and(above_lon, below_lon) | |
) | |
df_test[name_new_column] = np.argmax(mask, axis=1) | |
# save index_to_gps_quadtree file | |
lat = torch.tensor(boundaries["mean_lat"]) | |
lon = torch.tensor(boundaries["mean_lon"]) | |
coord = torch.stack([lat / 90, lon / 180], dim=-1) | |
torch.save( | |
coord, | |
join( | |
data_path, f"index_to_gps_adaptive_quadtree_{cfg.depth}_{cfg.do_split}.pt" | |
), | |
) | |
# Overwrite test.csv and train.csv | |
if cfg.overwrite_csv: | |
df_train.to_csv(train_fp, index=False) | |
df_test.to_csv(test_fp, index=False) | |
if __name__ == "__main__": | |
main() | |