Spaces:
Running
Running
yunusserhat
commited on
Upload 2 files
Browse files- GPT4o_class.py +225 -0
- app.py +130 -0
GPT4o_class.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import base64
|
3 |
+
import requests
|
4 |
+
from tqdm import tqdm
|
5 |
+
from requests.exceptions import RequestException
|
6 |
+
from PIL import Image
|
7 |
+
from transformers import CLIPModel, CLIPProcessor
|
8 |
+
import torch
|
9 |
+
import faiss
|
10 |
+
import pickle
|
11 |
+
import numpy as np
|
12 |
+
import pandas as pd
|
13 |
+
from geopy.distance import geodesic
|
14 |
+
from transformers import AutoTokenizer, BitsAndBytesConfig
|
15 |
+
import torch
|
16 |
+
from PIL import Image
|
17 |
+
import requests
|
18 |
+
from io import BytesIO
|
19 |
+
import os
|
20 |
+
|
21 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
22 |
+
|
23 |
+
|
24 |
+
class GPT4o:
|
25 |
+
"""
|
26 |
+
A class to interact with OPENAI API to generate captions for images.
|
27 |
+
"""
|
28 |
+
|
29 |
+
def __init__(self, device="cpu") -> None:
|
30 |
+
"""
|
31 |
+
Initializes the GPT4o class by setting up necessary models and data.
|
32 |
+
"""
|
33 |
+
|
34 |
+
self.base64_image = None
|
35 |
+
self.img_emb = None
|
36 |
+
|
37 |
+
# Set the device to the first CUDA device
|
38 |
+
self.device = torch.device(device)
|
39 |
+
|
40 |
+
# Load the CLIP model and processor
|
41 |
+
self.model = CLIPModel.from_pretrained("geolocal/StreetCLIP").eval()
|
42 |
+
self.processor = CLIPProcessor.from_pretrained("geolocal/StreetCLIP")
|
43 |
+
|
44 |
+
# Move the model to the appropriate CUDA device
|
45 |
+
self.model.to(self.device)
|
46 |
+
|
47 |
+
# Load the embeddings and coordinates from the pickle file
|
48 |
+
with open('', 'rb') as f: # Enter the path to the pickle file
|
49 |
+
self.MP_16_Embeddings = pickle.load(f)
|
50 |
+
self.locations = [value['location'] for key, value in self.MP_16_Embeddings.items()]
|
51 |
+
|
52 |
+
# Load the Faiss index
|
53 |
+
index2 = faiss.read_index("") # Enter the path to the Faiss index file
|
54 |
+
self.gpu_index = index2
|
55 |
+
|
56 |
+
def read_image(self, image_path):
|
57 |
+
"""
|
58 |
+
Reads an image from a file into a numpy array.
|
59 |
+
Args:
|
60 |
+
image_path (str): The path to the image file.
|
61 |
+
Returns:
|
62 |
+
np.ndarray: The image as a numpy array.
|
63 |
+
"""
|
64 |
+
image = cv2.imread(image_path)
|
65 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
66 |
+
return image
|
67 |
+
|
68 |
+
def search_neighbors(self, faiss_index, k_nearest, k_farthest, query_embedding):
|
69 |
+
"""
|
70 |
+
Searches for the k nearest and farthest neighbors of a query image in the Faiss index.
|
71 |
+
Args:
|
72 |
+
faiss_index (faiss.swigfaiss.Index): The Faiss index.
|
73 |
+
k_nearest (int): The number of nearest neighbors to search for.
|
74 |
+
k_farthest (int): The number of farthest neighbors to search for.
|
75 |
+
query_embedding (np.ndarray): The embeddings of the query image.
|
76 |
+
Returns:
|
77 |
+
tuple: The locations of the k nearest and k farthest neighbors.
|
78 |
+
"""
|
79 |
+
# Perform the search using Faiss for the given embedding
|
80 |
+
_, I = faiss_index.search(query_embedding.reshape(1, -1), k_nearest)
|
81 |
+
self.neighbor_locations_array = [self.locations[idx] for idx in I[0]]
|
82 |
+
neighbor_locations = " ".join([str(i) for i in self.neighbor_locations_array])
|
83 |
+
|
84 |
+
# Perform the farthest search using Faiss for the given embedding
|
85 |
+
_, I = faiss_index.search(-query_embedding.reshape(1, -1), k_farthest)
|
86 |
+
self.farthest_locations_array = [self.locations[idx] for idx in I[0]]
|
87 |
+
farthest_locations = " ".join([str(i) for i in self.farthest_locations_array])
|
88 |
+
|
89 |
+
return neighbor_locations, farthest_locations
|
90 |
+
|
91 |
+
def encode_image(self, image: np.ndarray, format: str = 'jpeg') -> str:
|
92 |
+
"""
|
93 |
+
Encodes an OpenCV image to a Base64 string.
|
94 |
+
Args:
|
95 |
+
image (np.ndarray): An image represented as a numpy array.
|
96 |
+
format (str, optional): The format for encoding the image. Defaults to 'jpeg'.
|
97 |
+
Returns:
|
98 |
+
str: A Base64 encoded string of the image.
|
99 |
+
Raises:
|
100 |
+
ValueError: If the image conversion fails.
|
101 |
+
"""
|
102 |
+
try:
|
103 |
+
retval, buffer = cv2.imencode(f'.{format}', image)
|
104 |
+
if not retval:
|
105 |
+
raise ValueError("Failed to convert image")
|
106 |
+
|
107 |
+
base64_encoded = base64.b64encode(buffer).decode('utf-8')
|
108 |
+
mime_type = f"image/{format}"
|
109 |
+
return f"data:{mime_type};base64,{base64_encoded}"
|
110 |
+
except Exception as e:
|
111 |
+
raise ValueError(f"Error encoding image: {e}")
|
112 |
+
|
113 |
+
def set_image_app(self, file_uploader, imformat: str = 'jpeg', use_database_search: bool = False,
|
114 |
+
num_neighbors: int = 16, num_farthest: int = 16) -> None:
|
115 |
+
"""
|
116 |
+
Sets the image for the class by encoding it to Base64.
|
117 |
+
Args:
|
118 |
+
file_uploader : A uploaded image (PIL Image from Gradio).
|
119 |
+
imformat (str, optional): The format for encoding the image. Defaults to 'jpeg'.
|
120 |
+
use_database_search (bool, optional): Whether to use a database search to get the neighbor image location as a reference. Defaults to False.
|
121 |
+
"""
|
122 |
+
|
123 |
+
# Convert the PIL Image (Gradio upload) to a numpy array
|
124 |
+
img_array = np.array(file_uploader)
|
125 |
+
|
126 |
+
# Process the image using the CLIP processor
|
127 |
+
image = self.processor(images=img_array, return_tensors="pt")
|
128 |
+
|
129 |
+
# Move the image to the CUDA device and get its embeddings
|
130 |
+
image = image.to(self.device)
|
131 |
+
with torch.no_grad():
|
132 |
+
img_emb = self.model.get_image_features(**image)[0]
|
133 |
+
|
134 |
+
# Store the embeddings and the locations of the nearest neighbors
|
135 |
+
self.img_emb = img_emb.cpu().numpy()
|
136 |
+
if use_database_search:
|
137 |
+
self.neighbor_locations, self.farthest_locations = self.search_neighbors(self.gpu_index, num_neighbors,
|
138 |
+
num_farthest, self.img_emb)
|
139 |
+
|
140 |
+
# Encode the image to Base64
|
141 |
+
self.base64_image = self.encode_image(img_array, imformat)
|
142 |
+
|
143 |
+
def create_payload(self, question: str) -> dict:
|
144 |
+
"""
|
145 |
+
Creates the payload for the API request to OpenAI.
|
146 |
+
Args:
|
147 |
+
question (str): The question to ask about the image.
|
148 |
+
Returns:
|
149 |
+
dict: The payload for the API request.
|
150 |
+
Raises:
|
151 |
+
ValueError: If the image is not set.
|
152 |
+
"""
|
153 |
+
if not self.base64_image:
|
154 |
+
raise ValueError("Image not set")
|
155 |
+
return {
|
156 |
+
"model": "gpt-4o", # Can change to any other model
|
157 |
+
"messages": [
|
158 |
+
{
|
159 |
+
"role": "user",
|
160 |
+
"content": [
|
161 |
+
{
|
162 |
+
"type": "text",
|
163 |
+
"text": question
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"type": "image_url",
|
167 |
+
"image_url": {
|
168 |
+
"url": self.base64_image
|
169 |
+
}
|
170 |
+
}
|
171 |
+
]
|
172 |
+
}
|
173 |
+
],
|
174 |
+
"max_tokens": 300,
|
175 |
+
}
|
176 |
+
|
177 |
+
def get_location(self, OPENAI_API_KEY, use_database_search: bool = False) -> str:
|
178 |
+
"""
|
179 |
+
Generates a caption for the provided image using OPENAI API.
|
180 |
+
Args:
|
181 |
+
OPENAI_API_KEY (str): The API key for OPENAI API.
|
182 |
+
use_database_search (bool, optional): Whether to use a database search to get the neighbor image location as a reference. Defaults to False.
|
183 |
+
Returns:
|
184 |
+
str: The generated caption for the image.
|
185 |
+
"""
|
186 |
+
try:
|
187 |
+
self.api_key = OPENAI_API_KEY
|
188 |
+
if not self.api_key:
|
189 |
+
raise ValueError("OPENAI API key not found")
|
190 |
+
|
191 |
+
# Create the question for the API
|
192 |
+
if use_database_search:
|
193 |
+
self.question = f'''Suppose you are an expert in geo-localization. Please analyze this image and give me a guess of the location.
|
194 |
+
Your answer must be to the coordinates level, don't include any other information in your output.
|
195 |
+
Ignore that you can't give an exact answer, give me some coordinate no matter how.
|
196 |
+
For your reference, these are locations of some similar images {self.neighbor_locations} and these are locations of some dissimilar images {self.farthest_locations} that should be far away.'''
|
197 |
+
else:
|
198 |
+
self.question = "Suppose you are an expert in geo-localization. Please analyze this image and give me a guess of the location. Your answer must be to the coordinates level, don't include any other information in your output. You can give me a guessed answer."
|
199 |
+
|
200 |
+
# Create the payload and the headers for the API request
|
201 |
+
payload = self.create_payload(self.question)
|
202 |
+
headers = {
|
203 |
+
"Content-Type": "application/json",
|
204 |
+
"Authorization": f"Bearer {self.api_key}"
|
205 |
+
}
|
206 |
+
|
207 |
+
# Send the API request and get the response
|
208 |
+
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
|
209 |
+
response.raise_for_status()
|
210 |
+
response_data = response.json()
|
211 |
+
|
212 |
+
# Log the full response for debugging
|
213 |
+
# print("Full API Response:", response_data)
|
214 |
+
|
215 |
+
# Return the generated caption
|
216 |
+
if 'choices' in response_data and len(response_data['choices']) > 0:
|
217 |
+
return response_data['choices'][0]['message']['content']
|
218 |
+
else:
|
219 |
+
raise ValueError("Unexpected response format from API")
|
220 |
+
except RequestException as e:
|
221 |
+
raise ValueError(f"Error in API request: {e}")
|
222 |
+
except KeyError as e:
|
223 |
+
raise ValueError(f"Key error in response: {e} - Response: {response_data}")
|
224 |
+
except ValueError as e:
|
225 |
+
raise ValueError(f"Value error: {e} - Response: {response_data}")
|
app.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import folium
|
5 |
+
from io import BytesIO
|
6 |
+
from GPT4o_class import GPT4o
|
7 |
+
|
8 |
+
# Initialize the GPT4v2Loc object
|
9 |
+
geo_locator = GPT4o(device="cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
|
11 |
+
|
12 |
+
# Function to handle the main processing logic
|
13 |
+
def process_image(uploaded_file, openai_api_key, num_nearest_neighbors, num_farthest_neighbors):
|
14 |
+
if not openai_api_key:
|
15 |
+
return "Please add your API key to continue.", None
|
16 |
+
|
17 |
+
if uploaded_file is None:
|
18 |
+
return "Please upload an image.", None
|
19 |
+
|
20 |
+
# Use the set_image_app method to process the uploaded image
|
21 |
+
geo_locator.set_image_app(
|
22 |
+
file_uploader=uploaded_file,
|
23 |
+
imformat='jpeg',
|
24 |
+
use_database_search=True, # Assuming you want to use the nearest/farthest neighbors
|
25 |
+
num_neighbors=num_nearest_neighbors,
|
26 |
+
num_farthest=num_farthest_neighbors
|
27 |
+
)
|
28 |
+
|
29 |
+
# Get the location from the OPENAI API
|
30 |
+
coordinates = geo_locator.get_location(
|
31 |
+
OPENAI_API_KEY=openai_api_key,
|
32 |
+
use_database_search=True # Assuming you want to use the nearest/farthest neighbors
|
33 |
+
)
|
34 |
+
|
35 |
+
lat_str, lon_str = coordinates.split(',')
|
36 |
+
lat_str = lat_str.strip("() ")
|
37 |
+
lon_str = lon_str.strip("() ")
|
38 |
+
latitude = float(lat_str)
|
39 |
+
longitude = float(lon_str)
|
40 |
+
|
41 |
+
# Generate the prediction map
|
42 |
+
prediction_map = folium.Map(location=[latitude, longitude], zoom_start=12)
|
43 |
+
folium.Marker([latitude, longitude], tooltip='Img2Loc Location',
|
44 |
+
popup=f'latitude: {latitude}, longitude: {longitude}',
|
45 |
+
icon=folium.Icon(color="red", icon="map-pin", prefix="fa")).add_to(prediction_map)
|
46 |
+
folium.TileLayer('cartodbpositron').add_to(prediction_map)
|
47 |
+
|
48 |
+
# Generate the nearest neighbor map
|
49 |
+
nearest_map = None
|
50 |
+
if geo_locator.neighbor_locations_array:
|
51 |
+
nearest_map = folium.Map(location=geo_locator.neighbor_locations_array[0], zoom_start=4)
|
52 |
+
folium.TileLayer('cartodbpositron').add_to(nearest_map)
|
53 |
+
for i in geo_locator.neighbor_locations_array:
|
54 |
+
folium.Marker(i, tooltip=f'({i[0]}, {i[1]})',
|
55 |
+
icon=folium.Icon(color="green", icon="compass", prefix="fa")).add_to(nearest_map)
|
56 |
+
|
57 |
+
# Generate the farthest neighbor map
|
58 |
+
farthest_map = None
|
59 |
+
if geo_locator.farthest_locations_array:
|
60 |
+
farthest_map = folium.Map(location=geo_locator.farthest_locations_array[0], zoom_start=3)
|
61 |
+
folium.TileLayer('cartodbpositron').add_to(farthest_map)
|
62 |
+
for i in geo_locator.farthest_locations_array:
|
63 |
+
folium.Marker(i, tooltip=f'({i[0]}, {i[1]})',
|
64 |
+
icon=folium.Icon(color="blue", icon="compass", prefix="fa")).add_to(farthest_map)
|
65 |
+
|
66 |
+
# Convert maps to HTML representations
|
67 |
+
prediction_map_html = map_to_html(prediction_map)
|
68 |
+
nearest_map_html = map_to_html(nearest_map) if nearest_map else ""
|
69 |
+
farthest_map_html = map_to_html(farthest_map) if farthest_map else ""
|
70 |
+
|
71 |
+
# Create a combined HTML output for Gradio
|
72 |
+
combined_html = f"""
|
73 |
+
<div style="text-align: center;">
|
74 |
+
<h3>Prediction Map</h3>
|
75 |
+
{prediction_map_html}
|
76 |
+
<div style="display: flex; justify-content: space-between; margin-top: 20px;">
|
77 |
+
<div style="flex: 1; margin-right: 10px;">
|
78 |
+
<h4>Nearest Neighbor Points Map</h4>
|
79 |
+
{nearest_map_html}
|
80 |
+
</div>
|
81 |
+
<div style="flex: 1; margin-left: 10px;">
|
82 |
+
<h4>Farthest Neighbor Points Map</h4>
|
83 |
+
{farthest_map_html}
|
84 |
+
</div>
|
85 |
+
</div>
|
86 |
+
</div>
|
87 |
+
"""
|
88 |
+
|
89 |
+
# Return the coordinates (location information) and the combined HTML with maps
|
90 |
+
return coordinates, combined_html
|
91 |
+
|
92 |
+
|
93 |
+
def map_to_html(map_obj):
|
94 |
+
"""
|
95 |
+
Convert a Folium map to an HTML representation.
|
96 |
+
"""
|
97 |
+
return map_obj._repr_html_()
|
98 |
+
|
99 |
+
|
100 |
+
# Gradio Interface
|
101 |
+
with gr.Blocks() as vision_app:
|
102 |
+
with gr.Row():
|
103 |
+
with gr.Column():
|
104 |
+
uploaded_file = gr.Image(label="Upload an image")
|
105 |
+
openai_api_key = gr.Textbox(label="API Key", placeholder="xxxxxxxxx", type="password")
|
106 |
+
|
107 |
+
with gr.Accordion("Advanced Options", open=False):
|
108 |
+
num_nearest_neighbors = gr.Number(label="Number of nearest neighbors", value=16)
|
109 |
+
num_farthest_neighbors = gr.Number(label="Number of farthest neighbors", value=16)
|
110 |
+
|
111 |
+
submit = gr.Button("Submit")
|
112 |
+
|
113 |
+
with gr.Column():
|
114 |
+
status = gr.Textbox(label="Predicted Location")
|
115 |
+
maps_display = gr.HTML(label="Generated Maps") # Using HTML for correct map rendering
|
116 |
+
|
117 |
+
submit.click(
|
118 |
+
process_image,
|
119 |
+
inputs=[
|
120 |
+
uploaded_file,
|
121 |
+
openai_api_key,
|
122 |
+
num_nearest_neighbors,
|
123 |
+
num_farthest_neighbors
|
124 |
+
],
|
125 |
+
outputs=[status, maps_display]
|
126 |
+
)
|
127 |
+
|
128 |
+
vision_app.launch()
|
129 |
+
|
130 |
+
|