Spaces:
Sleeping
Sleeping
update app.py
Browse files
app.py
CHANGED
@@ -1,217 +1,25 @@
|
|
1 |
-
# streamlit_app/app.py
|
2 |
import streamlit as st
|
3 |
import torch
|
4 |
from torchvision import transforms
|
5 |
from PIL import Image
|
6 |
-
import yaml
|
7 |
-
from pathlib import Path
|
8 |
-
import sys
|
9 |
-
import os
|
10 |
import time
|
11 |
from datetime import datetime
|
12 |
import pandas as pd
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
plant_care_tips = {
|
24 |
-
"Corn_(maize)___healthy": {
|
25 |
-
"short_term": [
|
26 |
-
"Continue regular watering schedule",
|
27 |
-
"Monitor for any changes in leaf color",
|
28 |
-
"Maintain good air circulation"
|
29 |
-
],
|
30 |
-
"long_term": [
|
31 |
-
"Regular soil testing",
|
32 |
-
"Crop rotation planning",
|
33 |
-
"Preventive pest management"
|
34 |
-
]
|
35 |
-
},
|
36 |
-
"Tomato___Late_blight": {
|
37 |
-
"short_term": [
|
38 |
-
"Remove infected leaves immediately",
|
39 |
-
"Apply appropriate fungicide",
|
40 |
-
"Improve air circulation around plants"
|
41 |
-
],
|
42 |
-
"long_term": [
|
43 |
-
"Use resistant varieties next season",
|
44 |
-
"Improve soil drainage",
|
45 |
-
"Practice crop rotation"
|
46 |
-
]
|
47 |
-
}
|
48 |
-
}
|
49 |
-
|
50 |
-
def load_model():
|
51 |
-
"""Load the trained model and class mappings"""
|
52 |
-
try:
|
53 |
-
# Load config
|
54 |
-
with open(CONFIG_PATH) as f:
|
55 |
-
config = yaml.safe_load(f)
|
56 |
-
|
57 |
-
print(f"Loading model with {config['model']['num_classes']} classes")
|
58 |
-
|
59 |
-
# Initialize model
|
60 |
-
model = PlantDiseaseModel(num_classes=config['model']['num_classes'])
|
61 |
-
|
62 |
-
# Load trained weights
|
63 |
-
print(f"Loading checkpoint from: {MODEL_PATH}")
|
64 |
-
checkpoint = torch.load(MODEL_PATH, map_location=torch.device('cpu'))
|
65 |
-
|
66 |
-
model.load_state_dict(checkpoint['model_state_dict'])
|
67 |
-
model.eval()
|
68 |
-
|
69 |
-
return model, checkpoint['class_to_idx']
|
70 |
-
|
71 |
-
except Exception as e:
|
72 |
-
print(f"Error in load_model: {str(e)}")
|
73 |
-
raise e
|
74 |
-
|
75 |
-
def process_image(image):
|
76 |
-
"""Process and display image transformation steps"""
|
77 |
-
st.write("🔍 Image Processing Steps:")
|
78 |
-
col1, col2, col3 = st.columns(3)
|
79 |
-
|
80 |
-
with col1:
|
81 |
-
resized = transforms.Resize(256)(image)
|
82 |
-
st.image(resized, caption="Resized Image")
|
83 |
-
|
84 |
-
with col2:
|
85 |
-
cropped = transforms.CenterCrop(224)(resized)
|
86 |
-
st.image(cropped, caption="Cropped Image")
|
87 |
-
|
88 |
-
with col3:
|
89 |
-
st.write("Final Processing:")
|
90 |
-
st.write("• Converted to tensor")
|
91 |
-
st.write("• Normalized")
|
92 |
-
|
93 |
-
transform = transforms.Compose([
|
94 |
-
transforms.Resize(256),
|
95 |
-
transforms.CenterCrop(224),
|
96 |
-
transforms.ToTensor(),
|
97 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
98 |
-
])
|
99 |
-
return transform(image).unsqueeze(0)
|
100 |
-
|
101 |
-
def main():
|
102 |
-
st.set_page_config(page_title="Plant Disease Classifier", layout="wide")
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
st.session_state.history = []
|
107 |
-
|
108 |
-
# Create tabs
|
109 |
-
tab1, tab2 = st.tabs(["Classifier", "Model Info"])
|
110 |
-
|
111 |
-
with tab1:
|
112 |
-
st.title("🌿 Plant Disease Classifier")
|
113 |
-
|
114 |
-
try:
|
115 |
-
model, class_to_idx = load_model()
|
116 |
-
idx_to_class = {v: k for k, v in class_to_idx.items()}
|
117 |
-
|
118 |
-
except Exception as e:
|
119 |
-
st.error(f"Error loading model: {str(e)}")
|
120 |
-
st.write("Debugging info:")
|
121 |
-
st.write(f"Config path exists: {CONFIG_PATH.exists()}")
|
122 |
-
st.write(f"Model path exists: {MODEL_PATH.exists()}")
|
123 |
-
return
|
124 |
-
|
125 |
-
col1, col2 = st.columns([1, 1])
|
126 |
-
|
127 |
-
with col1:
|
128 |
-
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
129 |
-
|
130 |
-
if uploaded_file is not None:
|
131 |
-
image = Image.open(uploaded_file).convert('RGB')
|
132 |
-
st.image(image, caption='Uploaded Image', use_column_width=True)
|
133 |
-
|
134 |
-
with col2:
|
135 |
-
if uploaded_file is not None:
|
136 |
-
with st.spinner('Analyzing image...'):
|
137 |
-
progress_bar = st.progress(0)
|
138 |
-
for i in range(100):
|
139 |
-
time.sleep(0.01)
|
140 |
-
progress_bar.progress(i + 1)
|
141 |
-
|
142 |
-
try:
|
143 |
-
input_tensor = process_image(image)
|
144 |
-
|
145 |
-
with torch.no_grad():
|
146 |
-
output = model(input_tensor)
|
147 |
-
probabilities = torch.nn.functional.softmax(output, dim=1)
|
148 |
-
predicted_idx = output.argmax(1).item()
|
149 |
-
confidence = probabilities[0][predicted_idx].item()
|
150 |
-
|
151 |
-
predicted_class = idx_to_class[predicted_idx]
|
152 |
-
|
153 |
-
# Store prediction in history
|
154 |
-
st.session_state.history.append({
|
155 |
-
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
156 |
-
'prediction': predicted_class,
|
157 |
-
'confidence': confidence
|
158 |
-
})
|
159 |
-
|
160 |
-
# Show prediction and confidence
|
161 |
-
st.subheader("📊 Analysis Results")
|
162 |
-
if "healthy" in predicted_class.lower():
|
163 |
-
st.success(f"🌱 Prediction: {predicted_class.replace('_', ' ')}")
|
164 |
-
else:
|
165 |
-
st.warning(f"⚠️ Prediction: {predicted_class.replace('_', ' ')}")
|
166 |
-
|
167 |
-
# Show class probabilities
|
168 |
-
for idx, prob in enumerate(probabilities[0]):
|
169 |
-
class_name = idx_to_class[idx].replace('_', ' ')
|
170 |
-
st.write(f"{class_name}: {prob*100:.2f}%")
|
171 |
-
st.progress(float(prob))
|
172 |
-
|
173 |
-
# Show care recommendations
|
174 |
-
if predicted_class in plant_care_tips:
|
175 |
-
st.subheader("🌱 Care Recommendations")
|
176 |
-
|
177 |
-
col_short, col_long = st.columns(2)
|
178 |
-
with col_short:
|
179 |
-
st.write("Immediate Actions:")
|
180 |
-
for tip in plant_care_tips[predicted_class]["short_term"]:
|
181 |
-
st.write(f"• {tip}")
|
182 |
-
with col_long:
|
183 |
-
st.write("Long-term Prevention:")
|
184 |
-
for tip in plant_care_tips[predicted_class]["long_term"]:
|
185 |
-
st.write(f"• {tip}")
|
186 |
-
|
187 |
-
except Exception as e:
|
188 |
-
st.error(f"Error processing image: {str(e)}")
|
189 |
-
|
190 |
-
with tab2:
|
191 |
-
st.header("Model Architecture")
|
192 |
-
st.write("""
|
193 |
-
This classifier uses a ResNet50 architecture with transfer learning:
|
194 |
-
- Pre-trained on ImageNet
|
195 |
-
- Fine-tuned on plant disease dataset
|
196 |
-
- 2 disease classes
|
197 |
-
- Input size: 224x224 pixels
|
198 |
-
""")
|
199 |
-
|
200 |
-
st.subheader("Performance Metrics")
|
201 |
-
metrics_df = pd.DataFrame({
|
202 |
-
'Metric': ['Training Accuracy', 'Validation Accuracy', 'Number of Parameters'],
|
203 |
-
'Value': ['99.0%', '100%', '23.5M']
|
204 |
-
})
|
205 |
-
st.table(metrics_df)
|
206 |
|
207 |
-
|
208 |
-
|
209 |
-
if st.session_state.history:
|
210 |
-
for item in reversed(st.session_state.history[-5:]):
|
211 |
-
st.sidebar.write(f"Time: {item['timestamp']}")
|
212 |
-
st.sidebar.write(f"Prediction: {item['prediction'].replace('_', ' ')}")
|
213 |
-
st.sidebar.write(f"Confidence: {item['confidence']*100:.2f}%")
|
214 |
-
st.sidebar.divider()
|
215 |
|
216 |
-
|
217 |
-
main()
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
from torchvision import transforms
|
4 |
from PIL import Image
|
|
|
|
|
|
|
|
|
5 |
import time
|
6 |
from datetime import datetime
|
7 |
import pandas as pd
|
8 |
+
import torch.nn as nn
|
9 |
+
import torchvision.models as models
|
10 |
+
|
11 |
+
# Define model directly in app
|
12 |
+
class PlantDiseaseModel(nn.Module):
|
13 |
+
def __init__(self, num_classes=2):
|
14 |
+
super(PlantDiseaseModel, self).__init__()
|
15 |
+
self.model = models.resnet50(pretrained=True)
|
16 |
+
num_ftrs = self.model.fc.in_features
|
17 |
+
self.model.fc = nn.Linear(num_ftrs, num_classes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
def forward(self, x):
|
20 |
+
return self.model(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# Simplified paths
|
23 |
+
MODEL_PATH = 'best_model.pth'
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
# [Rest of your original code...]
|
|