yunusajib's picture
update app, and requitemts
018c2a2 verified
raw
history blame
3.32 kB
import streamlit as st
import torch
from torchvision import transforms
from PIL import Image
import numpy as np
# Custom model class (replace with your actual architecture)
class PlantDiseaseClassifier(torch.nn.Module):
def __init__(self, num_classes=2):
super().__init__()
# Example architecture - REPLACE WITH YOUR ACTUAL MODEL
self.model = torch.nn.Sequential(
torch.nn.Conv2d(3, 16, kernel_size=3, padding=1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2),
torch.nn.Conv2d(16, 32, kernel_size=3, padding=1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2),
torch.nn.Flatten(),
torch.nn.Linear(32*56*56, num_classes) # Adjust input dimensions
)
def forward(self, x):
return self.model(x)
@st.cache_resource
def load_model():
model = PlantDiseaseClassifier(num_classes=2) # Update with your class count
try:
model.load_state_dict(torch.load('best_model.pth', map_location='cpu'))
st.success("Model loaded successfully!")
except Exception as e:
st.error(f"Error loading model: {str(e)}")
return model
def predict(image, model, class_names):
"""Run prediction and return top class"""
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
input_tensor = transform(image).unsqueeze(0)
with torch.no_grad():
output = model(input_tensor)
probabilities = torch.nn.functional.softmax(output[0], dim=0)
top_prob, top_class = torch.topk(probabilities, 1)
return class_names[top_class.item()], top_prob.item()
def main():
st.title("🌱 Plant Disease Classifier")
# Update with your actual class names and care tips
CLASS_NAMES = {
0: "Healthy",
1: "Late Blight",
2: "Powdery Mildew" # Add all your classes
}
CARE_TIPS = {
"Healthy": ["Continue regular watering", "Monitor plant growth"],
"Late Blight": ["Remove infected leaves", "Apply fungicide"],
"Powdery Mildew": ["Improve air circulation", "Apply sulfur spray"]
}
model = load_model()
uploaded_file = st.file_uploader("Upload plant image", type=["jpg", "png", "jpeg"])
if uploaded_file and model is not None:
image = Image.open(uploaded_file).convert("RGB")
col1, col2 = st.columns(2)
with col1:
st.image(image, caption="Uploaded Image", use_column_width=True)
with st.spinner("Analyzing..."):
predicted_class, confidence = predict(image, model, CLASS_NAMES)
with col2:
if "healthy" in predicted_class.lower():
st.success(f"Prediction: {predicted_class} ({confidence*100:.1f}%)")
else:
st.error(f"Prediction: {predicted_class} ({confidence*100:.1f}%)")
st.subheader("Care Recommendations")
for tip in CARE_TIPS.get(predicted_class, ["No specific recommendations"]):
st.write(f"• {tip}")
if __name__ == "__main__":
main()