Spaces:
Runtime error
Runtime error
import torch | |
import cv2 | |
import tempfile | |
import gradio as gr | |
from ultralytics import YOLO | |
from ultralytics.nn.tasks import DetectionModel | |
from ultralytics.nn.modules.conv import Conv | |
# Add all the classes we've seen so far to the safe globals list | |
torch.serialization.add_safe_globals([ | |
DetectionModel, | |
torch.nn.modules.container.Sequential, | |
Conv | |
]) | |
# Load the YOLO model | |
model = YOLO("yolov8n.pt") | |
# Object tracking function | |
def track_objects(video_input): | |
# Read uploaded video | |
cap = cv2.VideoCapture(video_input) | |
# Create a temporary output video file | |
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
out = cv2.VideoWriter(tmp_file.name, fourcc, fps, (width, height)) | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
# Run YOLOv8 tracking | |
results = model.track(frame, persist=True, tracker="bytetrack.yaml")[0] | |
# Get annotated frame | |
annotated_frame = results.plot() | |
out.write(annotated_frame) | |
cap.release() | |
out.release() | |
return tmp_file.name | |
# Gradio interface | |
demo = gr.Interface( | |
fn=track_objects, | |
inputs=gr.Video(label="Upload a video to track people"), | |
outputs=gr.Video(label="Tracked Output"), | |
title="People Tracking with YOLOv8", | |
description="Upload a video and track people with YOLOv8 and ByteTrack" | |
) | |
demo.launch() |