Spaces:
Running
on
T4
Running
on
T4
# https://huggingface.co/yuntian-deng/latex2im_ss_finetunegptneo | |
import gradio as gr | |
import numpy as np | |
import requests | |
import base64 | |
import os | |
API_ENDPOINT = os.getenv('API_ENDPOINT') | |
API_KEY = os.getenv('API_KEY') | |
title = "<h1><center>Markup-to-Image Diffusion Models with Scheduled Sampling</center></h1>" | |
authors = "<center>Yuntian Deng, Noriyuki Kojima, Alexander M. Rush</center>" | |
info = '<center><a href="https://openreview.net/pdf?id=81VJDmOE2ol">Paper</a> <a href="https://github.com/da03/markup2im">Code</a></center>' | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
gr.Markdown(authors) | |
gr.Markdown(info) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
textbox = gr.Textbox(label=r'Type LaTeX formula below and click "Generate"', lines=1, max_lines=1, placeholder='Type LaTeX formula here and click "Generate"', value=r'\sum_{t=1}^T\E_{y_t \sim {\tilde P(y_t| y_0)}} \left\| \frac{y_t - \sqrt{\bar{\alpha}_t}y_0}{\sqrt{1-\bar{\alpha}_t}} - \epsilon_\theta(y_t, t)\right\|^2.') | |
submit_btn = gr.Button("Generate", elem_id="btn") | |
with gr.Column(scale=3): | |
slider = gr.Slider(0, 1000, value=0, label='step (out of 1000)') | |
image = gr.Image(label="Rendered Image", show_label=False, elem_id="image") | |
inputs = [textbox] | |
outputs = [slider, image, submit_btn] | |
def infer(formula): | |
data = {'formula': formula, 'api_key': API_KEY} | |
try: | |
with requests.post(url=API_ENDPOINT, data=data, timeout=600, stream=True) as r: | |
i = 0 | |
for line in r.iter_lines(): | |
response = line.decode('ascii').strip() | |
r = base64.decodebytes(response.encode('ascii')) | |
q = np.frombuffer(r, dtype=np.float32).reshape((64, 320, 3)) | |
i += 1 | |
yield i, q, submit_btn.update(visible=False) | |
yield i, q, submit_btn.update(visible=True) | |
except Exception as e: | |
yield 1000, 255*np.ones((64, 320, 3)), submit_btn.update(visible=True) | |
submit_btn.click(fn=infer, inputs=inputs, outputs=outputs) | |
demo.queue(concurrency_count=20, max_size=200).launch(enable_queue=True) | |