Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,50 @@
|
|
1 |
import gradio as gr
|
2 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# Load your validation set
|
5 |
#with open('validation_data.json', 'r') as file:
|
6 |
# validation_data = json.load(file)
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def predict(title, authors, abstract):
|
9 |
# Your model prediction logic here
|
10 |
-
score =
|
11 |
|
12 |
# Calculate precision for scores >= the predicted score
|
13 |
#selected = [d for d in validation_data if d['score'] >= score]
|
@@ -15,7 +52,7 @@ def predict(title, authors, abstract):
|
|
15 |
#precision = true_positives / len(selected) if selected else 0
|
16 |
precision = 0.2
|
17 |
|
18 |
-
result = f"
|
19 |
|
20 |
return score, result
|
21 |
|
|
|
1 |
import gradio as gr
|
2 |
import json
|
3 |
+
import re
|
4 |
+
import torch
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
6 |
+
|
7 |
+
model_name = 'yuntian-deng/ak-paper-selection-deberta'
|
8 |
+
max_length = 512
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
11 |
+
model.eval()
|
12 |
+
if torch.cuda.is_available():
|
13 |
+
model.cuda()
|
14 |
+
|
15 |
+
|
16 |
+
def normalize_spaces(text):
|
17 |
+
return re.sub(r'\s+', ' ', text).strip()
|
18 |
|
19 |
# Load your validation set
|
20 |
#with open('validation_data.json', 'r') as file:
|
21 |
# validation_data = json.load(file)
|
22 |
|
23 |
+
def fill_template(title, authors, abstract):
|
24 |
+
title = normalize_spaces(x['title'].replace('\n', ' '))
|
25 |
+
authors = ', '.join([author.strip() for author in authors.split(',')])
|
26 |
+
abstract = normalize_spaces(abstract.replace('\n', ' '))
|
27 |
+
text = f"""Title: {title}
|
28 |
+
Authors: {authors}
|
29 |
+
Abstract: {abstract}"""
|
30 |
+
return text
|
31 |
+
|
32 |
+
@torch.no_grad()
|
33 |
+
def model_inference(title, authors, abstract):
|
34 |
+
text = fill_template(title, authors, abstract)
|
35 |
+
print (text)
|
36 |
+
inputs = tokenizer([text], return_tensors="pt", truncation=True, max_length=max_length)
|
37 |
+
if torch.cuda.is_available():
|
38 |
+
inputs = {key: value.cuda() for key, value in inputs.items()}
|
39 |
+
outputs = model(**inputs)
|
40 |
+
logits = outputs.logits
|
41 |
+
probs = logits.softmax(dim=-1).view(-1)
|
42 |
+
score = probs[1].item()
|
43 |
+
return score
|
44 |
+
|
45 |
def predict(title, authors, abstract):
|
46 |
# Your model prediction logic here
|
47 |
+
score = model_inference(title, authors, abstract)
|
48 |
|
49 |
# Calculate precision for scores >= the predicted score
|
50 |
#selected = [d for d in validation_data if d['score'] >= score]
|
|
|
52 |
#precision = true_positives / len(selected) if selected else 0
|
53 |
precision = 0.2
|
54 |
|
55 |
+
result = f"Your score: {score:.2f}.\nFor papers with score >= {score:.2f}, {precision * 100:.2f}% are selected by AK."
|
56 |
|
57 |
return score, result
|
58 |
|