NameRecognition / app.py
yunkexiang's picture
create the app.py
50dcc1c
raw
history blame
1.77 kB
from transformers import pipeline
import gradio as gr
get_completion = pipeline("ner", model="dslim/bert-base-NER")
def ner(input):
output = get_completion(input)
return {"text": input, "entities": output}
def merge_tokens(tokens):
merged_tokens = []
for token in tokens:
if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]):
# If current token continues the entity of the last one, merge them
last_token = merged_tokens[-1]
last_token['word'] += token['word'].replace('##', '')
last_token['end'] = token['end']
last_token['score'] = (last_token['score'] + token['score']) / 2
else:
# Otherwise, add the token to the list
merged_tokens.append(token)
return merged_tokens
def ner(input):
output = get_completion(input)#, parameters=None, ENDPOINT_URL=API_URL
merged_tokens = merge_tokens(output)
return {"text": input, "entities": merged_tokens}
if __name__ == "__main__":
# Create the Gradio interface
demo = gr.Interface(fn=ner,
inputs=[gr.Textbox(label="Text to find entities", lines=2)],
outputs=[gr.HighlightedText(label="Text with entities")],
title="Sanofi Digital M&S Demo: Name Entity Recognition",
description="Find entities using the `dslim/bert-base-NER` model under the hood!",
allow_flagging="never",
examples=["My name is Yunke, I lead a data science team at Sanofi. I live in Cambridge, Massachusattes", "My address is: 450 water street, Cambridge, MA"])
# Launch the interface
demo.launch() #share=True