Spaces:
Sleeping
Sleeping
sunrainyg
commited on
Commit
Β·
3d14a12
1
Parent(s):
3f13efa
Update
Browse files
app.py
CHANGED
|
@@ -61,9 +61,14 @@ processor = AutoProcessor.from_pretrained(
|
|
| 61 |
max_pixels=MAX_PIXELS,
|
| 62 |
)
|
| 63 |
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
def build_conversation(video_path: str, question: str, fps: int):
|
|
|
|
| 67 |
return [
|
| 68 |
{
|
| 69 |
"role": "system",
|
|
@@ -74,21 +79,18 @@ def build_conversation(video_path: str, question: str, fps: int):
|
|
| 74 |
{
|
| 75 |
"role": "user",
|
| 76 |
"content": [
|
| 77 |
-
{"type": "video", "
|
| 78 |
-
{"type": "text",
|
| 79 |
],
|
| 80 |
},
|
| 81 |
]
|
| 82 |
|
| 83 |
|
|
|
|
| 84 |
# ========== Inference ==========
|
|
|
|
| 85 |
@torch.inference_mode()
|
| 86 |
-
def answer(video, question, fps=1, max_new_tokens=128, temperature=0.
|
| 87 |
-
"""
|
| 88 |
-
Main inference entry used by the Gradio UI.
|
| 89 |
-
- video: filepath from gr.Video
|
| 90 |
-
- question: user text; if empty, produce a summary + 5 QA pairs
|
| 91 |
-
"""
|
| 92 |
if video is None:
|
| 93 |
return "Please upload or drag a video first."
|
| 94 |
if not question or question.strip() == "":
|
|
@@ -104,30 +106,41 @@ def answer(video, question, fps=1, max_new_tokens=128, temperature=0.2, top_p=0.
|
|
| 104 |
return_dict=True,
|
| 105 |
return_tensors="pt",
|
| 106 |
)
|
| 107 |
-
# move tensors to
|
| 108 |
inputs = {k: (v.to(model.device) if hasattr(v, "to") else v) for k, v in inputs.items()}
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
gen_kwargs = dict(
|
| 111 |
max_new_tokens=int(max_new_tokens),
|
| 112 |
temperature=float(temperature),
|
| 113 |
top_p=float(top_p),
|
| 114 |
do_sample=(float(temperature) > 0.0),
|
| 115 |
pad_token_id=processor.tokenizer.eos_token_id,
|
|
|
|
| 116 |
)
|
| 117 |
|
| 118 |
output_ids = model.generate(**inputs, **gen_kwargs)
|
| 119 |
-
|
|
|
|
| 120 |
prompt_len = inputs["input_ids"].shape[1]
|
| 121 |
generated_ids = output_ids[0, prompt_len:]
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
|
|
|
| 125 |
skip_special_tokens=True,
|
| 126 |
clean_up_tokenization_spaces=True,
|
| 127 |
-
)
|
| 128 |
|
| 129 |
return text.strip()
|
| 130 |
|
|
|
|
|
|
|
|
|
|
| 131 |
# ========== Gradio UI ==========
|
| 132 |
with gr.Blocks(title="Video β Q&A (Qwen2.5-VL-7B WolfV2)") as demo:
|
| 133 |
gr.Markdown(
|
|
|
|
| 61 |
max_pixels=MAX_PIXELS,
|
| 62 |
)
|
| 63 |
|
| 64 |
+
# ---- Conversation builder (safe) ----
|
| 65 |
+
SYSTEM_PROMPT = (
|
| 66 |
+
"You are a helpful assistant that watches a user-provided video and answers "
|
| 67 |
+
"questions about it concisely and accurately."
|
| 68 |
+
)
|
| 69 |
|
| 70 |
def build_conversation(video_path: str, question: str, fps: int):
|
| 71 |
+
# Use 'video' key per Qwen examples; keep system as structured content
|
| 72 |
return [
|
| 73 |
{
|
| 74 |
"role": "system",
|
|
|
|
| 79 |
{
|
| 80 |
"role": "user",
|
| 81 |
"content": [
|
| 82 |
+
{"type": "video", "video": video_path}, # <β IMPORTANT
|
| 83 |
+
{"type": "text", "text": question},
|
| 84 |
],
|
| 85 |
},
|
| 86 |
]
|
| 87 |
|
| 88 |
|
| 89 |
+
|
| 90 |
# ========== Inference ==========
|
| 91 |
+
# ---- Inference (robust decoding + explicit eos) ----
|
| 92 |
@torch.inference_mode()
|
| 93 |
+
def answer(video, question, fps=1, max_new_tokens=128, temperature=0.0, top_p=0.9):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
if video is None:
|
| 95 |
return "Please upload or drag a video first."
|
| 96 |
if not question or question.strip() == "":
|
|
|
|
| 106 |
return_dict=True,
|
| 107 |
return_tensors="pt",
|
| 108 |
)
|
| 109 |
+
# move tensors to the right device
|
| 110 |
inputs = {k: (v.to(model.device) if hasattr(v, "to") else v) for k, v in inputs.items()}
|
| 111 |
|
| 112 |
+
# be explicit about eos/pad to avoid weird tails
|
| 113 |
+
eos_id = model.generation_config.eos_token_id
|
| 114 |
+
if isinstance(eos_id, list) and len(eos_id) > 0:
|
| 115 |
+
eos_id = eos_id[0]
|
| 116 |
+
|
| 117 |
gen_kwargs = dict(
|
| 118 |
max_new_tokens=int(max_new_tokens),
|
| 119 |
temperature=float(temperature),
|
| 120 |
top_p=float(top_p),
|
| 121 |
do_sample=(float(temperature) > 0.0),
|
| 122 |
pad_token_id=processor.tokenizer.eos_token_id,
|
| 123 |
+
eos_token_id=eos_id,
|
| 124 |
)
|
| 125 |
|
| 126 |
output_ids = model.generate(**inputs, **gen_kwargs)
|
| 127 |
+
|
| 128 |
+
# slice off the prompt for clean decoding
|
| 129 |
prompt_len = inputs["input_ids"].shape[1]
|
| 130 |
generated_ids = output_ids[0, prompt_len:]
|
| 131 |
|
| 132 |
+
# decode with tokenizer.decode (single sequence)
|
| 133 |
+
text = processor.tokenizer.decode(
|
| 134 |
+
generated_ids,
|
| 135 |
skip_special_tokens=True,
|
| 136 |
clean_up_tokenization_spaces=True,
|
| 137 |
+
)
|
| 138 |
|
| 139 |
return text.strip()
|
| 140 |
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
|
| 144 |
# ========== Gradio UI ==========
|
| 145 |
with gr.Blocks(title="Video β Q&A (Qwen2.5-VL-7B WolfV2)") as demo:
|
| 146 |
gr.Markdown(
|