yukiakai commited on
Commit
eb6aaea
·
verified ·
1 Parent(s): 71feeb3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -3
app.py CHANGED
@@ -1,9 +1,39 @@
1
  import gradio as gr
2
- import whisper
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
- model = whisper.load_model("large")
5
  def predict(audio, language):
6
- result = model.transcribe(audio=audio, language=language)
 
 
 
 
 
7
  return result["text"]
8
 
9
  demo = gr.Interface(
 
1
  import gradio as gr
2
+ import torch
3
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
4
+
5
+
6
+
7
+
8
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
9
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
10
+
11
+ model_id = "openai/whisper-large-v3"
12
+
13
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
14
+ model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
15
+ )
16
+ model.to(device)
17
+
18
+ processor = AutoProcessor.from_pretrained(model_id)
19
+
20
+ pipe = pipeline(
21
+ "automatic-speech-recognition",
22
+ model=model,
23
+ tokenizer=processor.tokenizer,
24
+ feature_extractor=processor.feature_extractor,
25
+ torch_dtype=torch_dtype,
26
+ device=device,
27
+ )
28
+
29
 
 
30
  def predict(audio, language):
31
+ generate_kwargs = {
32
+ "task": 'translate',
33
+ "language": language,
34
+ "return_timestamps": True,
35
+ }
36
+ result = result = pipe(audio, generate_kwargs=generate_kwargs)
37
  return result["text"]
38
 
39
  demo = gr.Interface(