Spaces:
Sleeping
Sleeping
import math | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from module import commons | |
from module. modules import LayerNorm | |
class Encoder(nn.Module): | |
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4,isflow=False, **kwargs): | |
super().__init__() | |
self.hidden_channels = hidden_channels | |
self.filter_channels = filter_channels | |
self.n_heads = n_heads | |
self.n_layers = n_layers | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.window_size = window_size | |
self.drop = nn.Dropout(p_dropout) | |
self.attn_layers = nn.ModuleList() | |
self.norm_layers_1 = nn.ModuleList() | |
self.ffn_layers = nn.ModuleList() | |
self.norm_layers_2 = nn.ModuleList() | |
for i in range(self.n_layers): | |
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size)) | |
self.norm_layers_1.append(LayerNorm(hidden_channels)) | |
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout)) | |
self.norm_layers_2.append(LayerNorm(hidden_channels)) | |
if isflow: | |
cond_layer = torch.nn.Conv1d(kwargs["gin_channels"], 2*hidden_channels*n_layers, 1) | |
self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1) | |
self.cond_layer = weight_norm_modules(cond_layer, name='weight') | |
self.gin_channels = kwargs["gin_channels"] | |
def forward(self, x, x_mask, g=None): | |
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) | |
x = x * x_mask | |
if g is not None: | |
g = self.cond_layer(g) | |
for i in range(self.n_layers): | |
if g is not None: | |
x = self.cond_pre(x) | |
cond_offset = i * 2 * self.hidden_channels | |
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:] | |
x = commons.fused_add_tanh_sigmoid_multiply( | |
x, | |
g_l, | |
torch.IntTensor([self.hidden_channels])) | |
y = self.attn_layers[i](x, x, attn_mask) | |
y = self.drop(y) | |
x = self.norm_layers_1[i](x + y) | |
y = self.ffn_layers[i](x, x_mask) | |
y = self.drop(y) | |
x = self.norm_layers_2[i](x + y) | |
x = x * x_mask | |
return x | |
class Decoder(nn.Module): | |
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs): | |
super().__init__() | |
self.hidden_channels = hidden_channels | |
self.filter_channels = filter_channels | |
self.n_heads = n_heads | |
self.n_layers = n_layers | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.proximal_bias = proximal_bias | |
self.proximal_init = proximal_init | |
self.drop = nn.Dropout(p_dropout) | |
self.self_attn_layers = nn.ModuleList() | |
self.norm_layers_0 = nn.ModuleList() | |
self.encdec_attn_layers = nn.ModuleList() | |
self.norm_layers_1 = nn.ModuleList() | |
self.ffn_layers = nn.ModuleList() | |
self.norm_layers_2 = nn.ModuleList() | |
for i in range(self.n_layers): | |
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init)) | |
self.norm_layers_0.append(LayerNorm(hidden_channels)) | |
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout)) | |
self.norm_layers_1.append(LayerNorm(hidden_channels)) | |
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True)) | |
self.norm_layers_2.append(LayerNorm(hidden_channels)) | |
def forward(self, x, x_mask, h, h_mask): | |
""" | |
x: decoder input | |
h: encoder output | |
""" | |
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype) | |
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1) | |
x = x * x_mask | |
for i in range(self.n_layers): | |
y = self.self_attn_layers[i](x, x, self_attn_mask) | |
y = self.drop(y) | |
x = self.norm_layers_0[i](x + y) | |
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask) | |
y = self.drop(y) | |
x = self.norm_layers_1[i](x + y) | |
y = self.ffn_layers[i](x, x_mask) | |
y = self.drop(y) | |
x = self.norm_layers_2[i](x + y) | |
x = x * x_mask | |
return x | |
class MultiHeadAttention(nn.Module): | |
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False): | |
super().__init__() | |
assert channels % n_heads == 0 | |
self.channels = channels | |
self.out_channels = out_channels | |
self.n_heads = n_heads | |
self.p_dropout = p_dropout | |
self.window_size = window_size | |
self.heads_share = heads_share | |
self.block_length = block_length | |
self.proximal_bias = proximal_bias | |
self.proximal_init = proximal_init | |
self.attn = None | |
self.k_channels = channels // n_heads | |
self.conv_q = nn.Conv1d(channels, channels, 1) | |
self.conv_k = nn.Conv1d(channels, channels, 1) | |
self.conv_v = nn.Conv1d(channels, channels, 1) | |
self.conv_o = nn.Conv1d(channels, out_channels, 1) | |
self.drop = nn.Dropout(p_dropout) | |
if window_size is not None: | |
n_heads_rel = 1 if heads_share else n_heads | |
rel_stddev = self.k_channels**-0.5 | |
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) | |
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) | |
nn.init.xavier_uniform_(self.conv_q.weight) | |
nn.init.xavier_uniform_(self.conv_k.weight) | |
nn.init.xavier_uniform_(self.conv_v.weight) | |
if proximal_init: | |
with torch.no_grad(): | |
self.conv_k.weight.copy_(self.conv_q.weight) | |
self.conv_k.bias.copy_(self.conv_q.bias) | |
def forward(self, x, c, attn_mask=None): | |
q = self.conv_q(x) | |
k = self.conv_k(c) | |
v = self.conv_v(c) | |
x, self.attn = self.attention(q, k, v, mask=attn_mask) | |
x = self.conv_o(x) | |
return x | |
def attention(self, query, key, value, mask=None): | |
# reshape [b, d, t] -> [b, n_h, t, d_k] | |
b, d, t_s, t_t = (*key.size(), query.size(2)) | |
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3) | |
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) | |
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) | |
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1)) | |
if self.window_size is not None: | |
assert t_s == t_t, "Relative attention is only available for self-attention." | |
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) | |
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings) | |
scores_local = self._relative_position_to_absolute_position(rel_logits) | |
scores = scores + scores_local | |
if self.proximal_bias: | |
assert t_s == t_t, "Proximal bias is only available for self-attention." | |
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype) | |
if mask is not None: | |
scores = scores.masked_fill(mask == 0, -1e4) | |
if self.block_length is not None: | |
assert t_s == t_t, "Local attention is only available for self-attention." | |
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length) | |
scores = scores.masked_fill(block_mask == 0, -1e4) | |
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s] | |
p_attn = self.drop(p_attn) | |
output = torch.matmul(p_attn, value) | |
if self.window_size is not None: | |
relative_weights = self._absolute_position_to_relative_position(p_attn) | |
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s) | |
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings) | |
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t] | |
return output, p_attn | |
def _matmul_with_relative_values(self, x, y): | |
""" | |
x: [b, h, l, m] | |
y: [h or 1, m, d] | |
ret: [b, h, l, d] | |
""" | |
ret = torch.matmul(x, y.unsqueeze(0)) | |
return ret | |
def _matmul_with_relative_keys(self, x, y): | |
""" | |
x: [b, h, l, d] | |
y: [h or 1, m, d] | |
ret: [b, h, l, m] | |
""" | |
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) | |
return ret | |
def _get_relative_embeddings(self, relative_embeddings, length): | |
max_relative_position = 2 * self.window_size + 1 | |
# Pad first before slice to avoid using cond ops. | |
pad_length = max(length - (self.window_size + 1), 0) | |
slice_start_position = max((self.window_size + 1) - length, 0) | |
slice_end_position = slice_start_position + 2 * length - 1 | |
if pad_length > 0: | |
padded_relative_embeddings = F.pad( | |
relative_embeddings, | |
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]])) | |
else: | |
padded_relative_embeddings = relative_embeddings | |
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position] | |
return used_relative_embeddings | |
def _relative_position_to_absolute_position(self, x): | |
""" | |
x: [b, h, l, 2*l-1] | |
ret: [b, h, l, l] | |
""" | |
batch, heads, length, _ = x.size() | |
# Concat columns of pad to shift from relative to absolute indexing. | |
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]])) | |
# Concat extra elements so to add up to shape (len+1, 2*len-1). | |
x_flat = x.view([batch, heads, length * 2 * length]) | |
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])) | |
# Reshape and slice out the padded elements. | |
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:] | |
return x_final | |
def _absolute_position_to_relative_position(self, x): | |
""" | |
x: [b, h, l, l] | |
ret: [b, h, l, 2*l-1] | |
""" | |
batch, heads, length, _ = x.size() | |
# padd along column | |
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])) | |
x_flat = x.view([batch, heads, length**2 + length*(length -1)]) | |
# add 0's in the beginning that will skew the elements after reshape | |
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]])) | |
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:] | |
return x_final | |
def _attention_bias_proximal(self, length): | |
"""Bias for self-attention to encourage attention to close positions. | |
Args: | |
length: an integer scalar. | |
Returns: | |
a Tensor with shape [1, 1, length, length] | |
""" | |
r = torch.arange(length, dtype=torch.float32) | |
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) | |
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0) | |
class FFN(nn.Module): | |
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.filter_channels = filter_channels | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.activation = activation | |
self.causal = causal | |
if causal: | |
self.padding = self._causal_padding | |
else: | |
self.padding = self._same_padding | |
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size) | |
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size) | |
self.drop = nn.Dropout(p_dropout) | |
def forward(self, x, x_mask): | |
x = self.conv_1(self.padding(x * x_mask)) | |
if self.activation == "gelu": | |
x = x * torch.sigmoid(1.702 * x) | |
else: | |
x = torch.relu(x) | |
x = self.drop(x) | |
x = self.conv_2(self.padding(x * x_mask)) | |
return x * x_mask | |
def _causal_padding(self, x): | |
if self.kernel_size == 1: | |
return x | |
pad_l = self.kernel_size - 1 | |
pad_r = 0 | |
padding = [[0, 0], [0, 0], [pad_l, pad_r]] | |
x = F.pad(x, commons.convert_pad_shape(padding)) | |
return x | |
def _same_padding(self, x): | |
if self.kernel_size == 1: | |
return x | |
pad_l = (self.kernel_size - 1) // 2 | |
pad_r = self.kernel_size // 2 | |
padding = [[0, 0], [0, 0], [pad_l, pad_r]] | |
x = F.pad(x, commons.convert_pad_shape(padding)) | |
return x | |
import torch.nn as nn | |
from torch.nn.utils import remove_weight_norm, weight_norm | |
class Depthwise_Separable_Conv1D(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=1, | |
padding=0, | |
dilation=1, | |
bias=True, | |
padding_mode='zeros', # TODO: refine this type | |
device=None, | |
dtype=None | |
): | |
super().__init__() | |
self.depth_conv = nn.Conv1d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size, | |
groups=in_channels, stride=stride, padding=padding, dilation=dilation, bias=bias, | |
padding_mode=padding_mode, device=device, dtype=dtype) | |
self.point_conv = nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias, | |
device=device, dtype=dtype) | |
def forward(self, input): | |
return self.point_conv(self.depth_conv(input)) | |
def weight_norm(self): | |
self.depth_conv = weight_norm(self.depth_conv, name='weight') | |
self.point_conv = weight_norm(self.point_conv, name='weight') | |
def remove_weight_norm(self): | |
self.depth_conv = remove_weight_norm(self.depth_conv, name='weight') | |
self.point_conv = remove_weight_norm(self.point_conv, name='weight') | |
class Depthwise_Separable_TransposeConv1D(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=1, | |
padding=0, | |
output_padding=0, | |
bias=True, | |
dilation=1, | |
padding_mode='zeros', # TODO: refine this type | |
device=None, | |
dtype=None | |
): | |
super().__init__() | |
self.depth_conv = nn.ConvTranspose1d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size, | |
groups=in_channels, stride=stride, output_padding=output_padding, | |
padding=padding, dilation=dilation, bias=bias, padding_mode=padding_mode, | |
device=device, dtype=dtype) | |
self.point_conv = nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias, | |
device=device, dtype=dtype) | |
def forward(self, input): | |
return self.point_conv(self.depth_conv(input)) | |
def weight_norm(self): | |
self.depth_conv = weight_norm(self.depth_conv, name='weight') | |
self.point_conv = weight_norm(self.point_conv, name='weight') | |
def remove_weight_norm(self): | |
remove_weight_norm(self.depth_conv, name='weight') | |
remove_weight_norm(self.point_conv, name='weight') | |
def weight_norm_modules(module, name='weight', dim=0): | |
if isinstance(module, Depthwise_Separable_Conv1D) or isinstance(module, Depthwise_Separable_TransposeConv1D): | |
module.weight_norm() | |
return module | |
else: | |
return weight_norm(module, name, dim) | |
def remove_weight_norm_modules(module, name='weight'): | |
if isinstance(module, Depthwise_Separable_Conv1D) or isinstance(module, Depthwise_Separable_TransposeConv1D): | |
module.remove_weight_norm() | |
else: | |
remove_weight_norm(module, name) | |
class FFT(nn.Module): | |
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers=1, kernel_size=1, p_dropout=0., | |
proximal_bias=False, proximal_init=True, isflow = False, **kwargs): | |
super().__init__() | |
self.hidden_channels = hidden_channels | |
self.filter_channels = filter_channels | |
self.n_heads = n_heads | |
self.n_layers = n_layers | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.proximal_bias = proximal_bias | |
self.proximal_init = proximal_init | |
if isflow: | |
cond_layer = torch.nn.Conv1d(kwargs["gin_channels"], 2*hidden_channels*n_layers, 1) | |
self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1) | |
self.cond_layer = weight_norm_modules(cond_layer, name='weight') | |
self.gin_channels = kwargs["gin_channels"] | |
self.drop = nn.Dropout(p_dropout) | |
self.self_attn_layers = nn.ModuleList() | |
self.norm_layers_0 = nn.ModuleList() | |
self.ffn_layers = nn.ModuleList() | |
self.norm_layers_1 = nn.ModuleList() | |
for i in range(self.n_layers): | |
self.self_attn_layers.append( | |
MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, | |
proximal_init=proximal_init)) | |
self.norm_layers_0.append(LayerNorm(hidden_channels)) | |
self.ffn_layers.append( | |
FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True)) | |
self.norm_layers_1.append(LayerNorm(hidden_channels)) | |
def forward(self, x, x_mask, g = None): | |
""" | |
x: decoder input | |
h: encoder output | |
""" | |
if g is not None: | |
g = self.cond_layer(g) | |
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype) | |
x = x * x_mask | |
for i in range(self.n_layers): | |
if g is not None: | |
x = self.cond_pre(x) | |
cond_offset = i * 2 * self.hidden_channels | |
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:] | |
x = commons.fused_add_tanh_sigmoid_multiply( | |
x, | |
g_l, | |
torch.IntTensor([self.hidden_channels])) | |
y = self.self_attn_layers[i](x, x, self_attn_mask) | |
y = self.drop(y) | |
x = self.norm_layers_0[i](x + y) | |
y = self.ffn_layers[i](x, x_mask) | |
y = self.drop(y) | |
x = self.norm_layers_1[i](x + y) | |
x = x * x_mask | |
return x | |
class TransformerCouplingLayer(nn.Module): | |
def __init__(self, | |
channels, | |
hidden_channels, | |
kernel_size, | |
n_layers, | |
n_heads, | |
p_dropout=0, | |
filter_channels=0, | |
mean_only=False, | |
wn_sharing_parameter=None, | |
gin_channels = 0 | |
): | |
assert channels % 2 == 0, "channels should be divisible by 2" | |
super().__init__() | |
self.channels = channels | |
self.hidden_channels = hidden_channels | |
self.kernel_size = kernel_size | |
self.n_layers = n_layers | |
self.half_channels = channels // 2 | |
self.mean_only = mean_only | |
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) | |
self.enc = Encoder(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, isflow = True, gin_channels = gin_channels) if wn_sharing_parameter is None else wn_sharing_parameter | |
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) | |
self.post.weight.data.zero_() | |
self.post.bias.data.zero_() | |
def forward(self, x, x_mask, g=None, reverse=False): | |
x0, x1 = torch.split(x, [self.half_channels]*2, 1) | |
h = self.pre(x0) * x_mask | |
h = self.enc(h, x_mask, g=g) | |
stats = self.post(h) * x_mask | |
if not self.mean_only: | |
m, logs = torch.split(stats, [self.half_channels]*2, 1) | |
else: | |
m = stats | |
logs = torch.zeros_like(m) | |
if not reverse: | |
x1 = m + x1 * torch.exp(logs) * x_mask | |
x = torch.cat([x0, x1], 1) | |
logdet = torch.sum(logs, [1,2]) | |
return x, logdet | |
else: | |
x1 = (x1 - m) * torch.exp(-logs) * x_mask | |
x = torch.cat([x0, x1], 1) | |
return x |