EAGLE-2 / model /cnets.py
yuhuili's picture
init
bffaf15
raw
history blame
39.6 kB
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch LLaMA model."""
import copy
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = "5"
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, \
SequenceClassifierOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
try:
from .configs import EConfig
except:
from configs import EConfig
import time
class Timer:
def __init__(self, name):
self.name = name
def __enter__(self):
torch.cuda.synchronize()
self.start = time.perf_counter()
def __exit__(self, exc_type, exc_value, traceback):
torch.cuda.synchronize()
elapsed = time.perf_counter() - self.start
print(f'{self.name} took {elapsed} seconds')
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
mask_cond = torch.arange(mask.size(-1), device=device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class LlamaRotaryEmbedding(torch.nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
)
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
t = t / self.scaling_factor
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
if seq_len > self.max_position_embeddings:
base = self.base * (
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
class LlamaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self._init_rope()
def _init_rope(self):
if self.config.rope_scaling is None:
if hasattr(self.config, "rope_theta"):
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.config.rope_theta)
else:
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim,
max_position_embeddings=self.max_position_embeddings)
else:
scaling_type = self.config.rope_scaling["type"]
scaling_factor = self.config.rope_scaling["factor"]
if scaling_type == "linear":
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
)
elif scaling_type == "dynamic":
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
)
else:
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
if self.config.pretraining_tp > 1:
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
query_slices = self.q_proj.weight.split(
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
query_states = torch.cat(query_states, dim=-1)
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
key_states = torch.cat(key_states, dim=-1)
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
value_states = torch.cat(value_states, dim=-1)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class LlamaMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
if self.config.pretraining_tp > 1:
slice = self.intermediate_size // self.config.pretraining_tp
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
gate_proj = torch.cat(
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
)
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
down_proj = [
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
]
down_proj = sum(down_proj)
else:
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
class LlamaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
LlamaRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class LlamaDecoderLayer(nn.Module):
def __init__(self, config, index):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = LlamaAttention(config=config)
self.mlp = LlamaMLP(config)
self.index = index
if self.index != 0:
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
residual = hidden_states
if self.index != 0:
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
class I(nn.Module):
def __init__(self):
super().__init__()
self.dummy = nn.Parameter(torch.ones(1, dtype=torch.float32))
def forward(self, x):
return x + self.dummy - self.dummy # (also tried x+self.dummy)
def len_list(x, n):
return [i for i in x if len(i) <= n]
class Model(nn.Module):
def __init__(self, config, load_emb=False, path=None, bias=True, total_tokens=63, depth=5, top_k=8, threshold=1.0):
super().__init__()
self.gradient_checkpointing = True
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
if load_emb:
from safetensors import safe_open
import json
try:
with open(os.path.join(path, "model.safetensors.index.json"), "r") as f:
index_json = json.loads(f.read())
emb_path = index_json["weight_map"]["model.embed_tokens.weight"]
with safe_open(os.path.join(path, emb_path),
framework="pt",
device="cpu") as f:
tensor_slice = f.get_slice("model.embed_tokens.weight")
vocab_size, hidden_dim = tensor_slice.get_shape()
tensor = tensor_slice[:, :hidden_dim].float()
except:
with open(os.path.join(path, "pytorch_model.bin.index.json"), "r") as f:
index_json = json.loads(f.read())
emb_path = index_json["weight_map"]["model.embed_tokens.weight"]
weights = torch.load(os.path.join(path, emb_path))
tensor = weights["model.embed_tokens.weight"].float()
self.embed_tokens.weight.data = tensor
self.top_k = top_k
self.total_tokens = total_tokens - 1
self.depth = depth
self.threshold = math.log(threshold)
# print("total_tokens",total_tokens)
# print("depth",depth)
# print("top_k",top_k)
# print("threshold",threshold)
self.layers = nn.ModuleList([LlamaDecoderLayer(config, index) for index in range(config.num_hidden_layers)])
self.fc = nn.Linear(2 * config.hidden_size, config.hidden_size, bias=bias)
self.act = ACT2FN[config.hidden_act]
self.logsoftmax = nn.LogSoftmax(dim=-1)
for param in self.embed_tokens.parameters():
param.requires_grad = False
def init_tree(self):
self.tree_mask_init = torch.eye(self.top_k, device=self.embed_tokens.weight.device)[None, None]
self.position_ids = torch.zeros(self.top_k, device=self.embed_tokens.weight.device, dtype=torch.long)
self.tree_mask_init = self.tree_mask_init.to(self.embed_tokens.weight.device)
def reset(self):
self.tree_mask = None
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
# inputs_embeds.dtype,
torch.float32, # [MODIFIED] force to cast to float32
device=inputs_embeds.device,
past_key_values_length=past_key_values_length,
)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(attention_mask, torch.float32, tgt_len=input_shape[-1]).to(
inputs_embeds.device
)
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
)
# [MODIFIED] add tree mask
if hasattr(self, "tree_mask") and self.tree_mask is not None:
tree_mask = self.tree_mask
_, _, tree_shape0, tree_shape1 = tree_mask.shape
combined_attention_mask[:, :, -tree_shape0:, -tree_shape1:][
tree_mask == 0
] = torch.finfo(torch.float32).min
return combined_attention_mask
def forward(
self,
hidden_states,
input_ids,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
std=None
):
batch_size, seq_length, _ = hidden_states.shape
seq_length_with_past = seq_length
past_key_values_length = 0
with torch.no_grad():
inputs_embeds = self.embed_tokens(input_ids)
# inputs_embeds = inputs_embeds.detach()
# if std is not None:
# noise = torch.randn(inputs_embeds.size(),device=inputs_embeds.device) * std
# inputs_embeds=inputs_embeds+noise
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = hidden_states.device if hidden_states is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past), dtype=torch.bool, device=hidden_states.device
)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, (batch_size, seq_length), hidden_states, past_key_values_length
)
# if self.gradient_checkpointing and self.training:
# if use_cache:
# use_cache = False
# hidden_states=self.act(self.fc(torch.cat((inputs_embeds,hidden_states),dim=-1)))
inputs_embeds = inputs_embeds.to(hidden_states.dtype)
hidden_states = self.fc(torch.cat((inputs_embeds, hidden_states), dim=-1))
all_hidden_states = () if output_hidden_states else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, past_key_value, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
position_ids,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if use_cache:
return hidden_states, next_decoder_cache
return hidden_states
def reset_kv(self):
self.stable_kv = None
@torch.no_grad()
def topK_genrate(self, hidden_states, input_ids, head, logits_processor):
input_ids = input_ids.to(hidden_states.device)
total_tokens = self.total_tokens
depth = self.depth
top_k = self.top_k
sample_token = input_ids[:, -1]
scores_list = []
parents_list = []
ss_token = []
input_ids = input_ids[:, 1:]
input_ids = input_ids.to(hidden_states.device)
len_posi = input_ids.shape[1]
self.reset()
# with Timer("draft many"):
if hasattr(self, "stable_kv") and self.stable_kv is not None:
kv_len = self.stable_kv[0][0].shape[2]
out_hidden, past_key_values = self(hidden_states, input_ids=input_ids[:, kv_len:],
past_key_values=self.stable_kv, use_cache=True)
else:
out_hidden, past_key_values = self(hidden_states, input_ids=input_ids, use_cache=True)
self.stable_kv = past_key_values
last_hidden = out_hidden[:, -1]
last_headout = head(last_hidden)
last_p = self.logsoftmax(last_headout)
top = torch.topk(last_p, top_k, dim=-1)
topk_index, topk_p = top.indices, top.values
scores = topk_p[0]
scores_list.append(scores[None])
parents_list.append(torch.zeros(1, dtype=torch.long, device=scores.device))
ss_token.append(topk_index)
input_ids = topk_index
input_hidden = last_hidden[None].repeat(1, top_k, 1)
tree_mask = self.tree_mask_init
topk_cs_index = torch.arange(top_k, device=self.embed_tokens.weight.device)
# 4
for i in range(depth):
self.tree_mask = tree_mask
position_ids = len_posi + self.position_ids
# with Timer("draft one"):
out_hidden, past_key_values = self(input_hidden, input_ids=input_ids, past_key_values=past_key_values,
position_ids=position_ids, use_cache=True)
len_posi += 1
# with Timer("sort1"):
bias1 = top_k if i > 0 else 0
bias2 = max(0, i - 1)
bias = 1 + top_k ** 2 * bias2 + bias1
parents = (topk_cs_index + bias)
parents_list.append(parents)
last_headout = head(out_hidden[0])
last_p = self.logsoftmax(last_headout)
top = torch.topk(last_p, top_k, dim=-1)
topk_index, topk_p = top.indices, top.values
cu_scores = topk_p + scores[:, None]
topk_cs = torch.topk(cu_scores.view(-1), top_k, dim=-1)
topk_cs_index, topk_cs_p = topk_cs.indices, topk_cs.values
scores = topk_cs_p
out_ids = topk_cs_index // top_k
input_hidden = out_hidden[:, out_ids]
# with Timer("2index"):
# in_ids = topk_cs_index % top_k
# input_ids = topk_index[out_ids, in_ids][None]
# with Timer("1index"):
input_ids = topk_index.view(-1)[topk_cs_index][None]
# print(input_ids.equal(input_ids0))
ss_token.append(topk_index)
scores_list.append(cu_scores)
tree_mask = torch.cat((tree_mask[:, :, out_ids], self.tree_mask_init), dim=3)
# if self.threshold < 0 and cu_scores.max() < self.threshold:
# break
# del parents_list,scores_list,ss_token
# return draft_tokens, mask_index,tree_mask,tree_position_ids
# with Timer("post"):
scores_list = torch.cat(scores_list, dim=0).view(-1)
ss_token_list = torch.cat(ss_token, dim=0).view(-1)
top_scores = torch.topk(scores_list, total_tokens, dim=-1)
top_scores_index = top_scores.indices
top_scores_index = torch.sort(top_scores_index).values
draft_tokens = ss_token_list[top_scores_index]
draft_tokens = torch.cat((sample_token, draft_tokens), dim=0)
draft_parents = torch.cat(parents_list, dim=0)[top_scores_index // top_k].long()
mask_index = torch.searchsorted(top_scores_index, draft_parents - 1, right=False)
# mask_index[(top_scores_index[mask_index]!=draft_parents - 1)]=-1
mask_index[draft_parents == 0] = -1
mask_index = mask_index + 1
mask_index_list = mask_index.tolist()
# with Timer("mask"):
tree_mask = torch.eye(total_tokens + 1).bool()
tree_mask[:, 0] = True
for i in range(total_tokens):
tree_mask[i + 1].add_(tree_mask[mask_index_list[i]])
# with Timer("mask1"):
# tree_mask0 = [[False for _ in range(total_tokens + 1)] for _ in range(total_tokens + 1)]
# tree_mask0[0][0] = True
# for i in range(total_tokens):
# #tree_mask0[i + 1][0]=True
# tree_mask0[i + 1][i + 1] = True
# p=mask_index_list[i]
# tree_mask0[i + 1][p] = True
# while p:
# p=mask_index_list[p-1]
# tree_mask0[i + 1][p] = True
# tree_mask0 = torch.tensor(tree_mask0, dtype=torch.bool)
#
# print(tree_mask0.equal(tree_mask))
tree_position_ids = torch.sum(tree_mask, dim=1) - 1
tree_mask = tree_mask.float()[None, None]
draft_tokens = draft_tokens[None]
del parents_list, scores_list, ss_token, ss_token_list, draft_parents
# with Timer("retrieve"):
max_depth = torch.max(tree_position_ids) + 1
noleaf_index = torch.unique(mask_index).tolist()
noleaf_num = len(noleaf_index) - 1
leaf_num = total_tokens - noleaf_num
retrieve_indices = torch.zeros(leaf_num, max_depth.item(), dtype=torch.long) - 1
retrieve_indices = retrieve_indices.tolist()
rid = 0
position_ids_list = tree_position_ids.tolist()
for i in range(total_tokens + 1):
if i not in noleaf_index:
cid = i
depth = position_ids_list[i]
for j in reversed(range(depth + 1)):
retrieve_indices[rid][j] = cid
cid = mask_index_list[cid - 1]
rid += 1
if logits_processor is not None:
maxitem = total_tokens + 5
def custom_sort(lst):
# sort_keys=[len(list)]
sort_keys = []
for i in range(len(lst)):
sort_keys.append(lst[i] if lst[i] >= 0 else maxitem)
return sort_keys
retrieve_indices = sorted(retrieve_indices, key=custom_sort)
retrieve_indices = torch.tensor(retrieve_indices, dtype=torch.long)
del mask_index, mask_index_list, noleaf_index, noleaf_num, leaf_num, max_depth, rid
tree_position_ids = tree_position_ids.to(hidden_states.device)
return draft_tokens, retrieve_indices, tree_mask, tree_position_ids
@torch.no_grad()
def acc(self, data, head, max_length=5):
hidden_states = data["hidden_states"]
input_ids = data["input_ids"]
# attention_mask=data["attention_mask"]
loss_mask = data["loss_mask"]
sample_mask = data["sample_mask"]
target = data["target"]
total = [0 for _ in range(max_length)]
correct = [0 for _ in range(max_length)]
bs, sl = hidden_states.shape[0], hidden_states.shape[1]
target_headout = head(target)
hidden_states_headout = head(hidden_states)
for i in range(bs):
for j in range(sl):
if loss_mask[i, j] == 0:
continue
single_hidden_states = hidden_states[i, :j]
single_input_ids = input_ids[i, :j]
single_hidden_states = single_hidden_states[None, :, :]
single_input_ids = single_input_ids[None, :]
for k in range(max_length):
tmp_in_target_headout = hidden_states_headout[i, single_hidden_states.shape[1] - 1]
tmp_out_target_headout = target_headout[i, single_hidden_states.shape[1] - 1]
target_in_token = torch.argmax(tmp_in_target_headout)
target_out_token = torch.argmax(tmp_out_target_headout)
tmp_token = input_ids[i, single_hidden_states.shape[1] - 1]
tmp_sample_mask = sample_mask[i, single_hidden_states.shape[1] - 1]
if not (target_in_token == tmp_token):
break
out_hidden = self(single_hidden_states, input_ids=single_input_ids)
last_hidden = out_hidden[:, -1]
last_headout = head(last_hidden)
token = torch.argmax(last_headout)
total[k] += 1
if token == target_out_token:
correct[k] += 1
else:
for kk in range(k, max_length):
total[kk] += 1
break
single_hidden_states = torch.cat((single_hidden_states, out_hidden[:, -1:]), dim=1)
single_input_ids = torch.cat(
(single_input_ids, torch.tensor([[token]]).to(single_input_ids.device)), dim=1)
acc = [correct[i] / total[i] for i in range(len(correct))]
return acc
class Vhead(nn.Module):
def __init__(self, ins=6566, outs=32000):
super().__init__()
self.fc = nn.Linear(ins, outs, bias=False)
def forward(self, x):
return self.fc(x)
import torch
def count_parameters(model):
return sum(p.numel() for p in model.parameters())
if __name__ == "__main__":
config = EConfig.from_pretrained('config.json')
model = Model(config, load_emb=True, path="/home/lyh/weights/hf/vicuna_v13/7B/")
print(model)