Spaces:
Runtime error
Runtime error
import os | |
import torch | |
from PIL import Image | |
from torchvision import transforms | |
import gradio as gr | |
#https://huggingface.co/spaces/yuhe6/final_project/blob/main/Net_Rotate9.pth | |
#os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt") | |
#model = torch.hub.load('huawei-noah/ghostnet', 'ghostnet_1x', pretrained=True) | |
#model = torch.jit.load('https://huggingface.co/spaces/yuhe6/final_project/blob/main/Net_Rotate9.pth').eval().to(device) | |
model = torch.jit.load('Net2_Flip_jit.pt', map_location = torch.device('cpu')) | |
model.eval() | |
model_categories = ["cat","dog"] # verify order | |
n_categories = len(model_categories) | |
#torch.hub.download_url_to_file('https://huggingface.co/spaces/yuhe6/final_project/blob/main/Net_Rotate9.pth', '/tmp/temporary_file') | |
#model = torch.hub.load('/tmp', 'temporary_file', pretrained=True) | |
#model.eval() | |
# Download an example image from the pytorch website | |
torch.hub.download_url_to_file("https://upload.wikimedia.org/wikipedia/commons/5/5b/Dog_%28Canis_lupus_familiaris%29_%281%29.jpg", "dog1.jpg") | |
torch.hub.download_url_to_file("https://upload.wikimedia.org/wikipedia/commons/thumb/6/6e/Golde33443.jpg/640px-Golde33443.jpg", "dog2.jpg") | |
torch.hub.download_url_to_file("https://upload.wikimedia.org/wikipedia/commons/c/c7/Tabby_cat_with_blue_eyes-3336579.jpg", "cat1.jpg") | |
torch.hub.download_url_to_file("https://upload.wikimedia.org/wikipedia/commons/9/9e/Domestic_cat.jpg", "cat2.jpg") | |
def inference(input_image): | |
preprocess = transforms.Compose([ | |
transforms.Resize(size = (256, 256)), # Fixed resize from transforms.Resize(256) | |
#transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
#transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
# Used print statements to detect shapes between input tensor & batch | |
# e.g. input_tensor.shape | |
input_tensor = preprocess(input_image) | |
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model | |
# move the input and model to GPU for speed if available | |
if torch.cuda.is_available(): | |
input_batch = input_batch.to('cuda') | |
model.to('cuda') | |
with torch.no_grad(): | |
output = model(input_batch) # model(input_tensor) # needed to have batch dimension | |
# The output has unnormalized scores. To get probabilities, you can run a softmax on it. | |
probabilities = torch.nn.functional.softmax(output[0]) | |
# Read the categories | |
#with open("dog_cat.txt", "r") as f: | |
#categories = [s.strip() for s in f.readlines()] | |
#with open("dog_cat.txt", "r") as f: | |
#categories = [s.strip() for s in f.readlines()] | |
# Show top categories per image | |
top1_prob, top1_catid = torch.topk(probabilities, n_categories) | |
result = {} | |
for i in range(top1_prob.size(0)): | |
result[model_categories[top1_catid[i]]] = top1_prob[i].item() | |
return result | |
inputs = gr.inputs.Image(type='pil') | |
outputs = gr.outputs.Label(type="confidences", num_top_classes = n_categories) | |
title = "STAT 430 Final Project App -- Made by Group DHZ" | |
description = "This is our Cat & Dog Classifier for the final project, and the model we use is generated by our second neural network augmented by the flipping technique, which is would give the best accuracy. To use it, simply upload your image, or click one of the examples to load them. The authors are Xiongjie Dai (xdai12), Yu He (yuhe6), Mengjia Zeng (mengjia6)." | |
#article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1911.11907'>GhostNet: More Features from Cheap Operations</a> | <a href='https://github.com/huawei-noah/CV-Backbones'>Github Repo</a></p>" | |
examples = [ | |
['dog1.jpg'], | |
['cat1.jpg'], | |
['dog2.jpg'], | |
['cat2.jpg'] | |
] | |
gr.Interface( | |
inference, inputs, outputs, | |
title = title, description = description, | |
examples = examples, | |
analytics_enabled = False).launch( | |
#debug = True # Enabled debug mode to see the stacktrace on Google Colab. | |
) |