yuhangzang
commited on
Commit
·
a059c46
1
Parent(s):
ea800cd
update
Browse files- .gitignore +169 -0
- README.md +2 -2
- app.py +172 -0
- app_util.py +201 -0
- ckpt.pth +3 -0
- csrc/MsDeformAttn/ms_deform_attn.h +64 -0
- csrc/MsDeformAttn/ms_deform_attn_cpu.cpp +43 -0
- csrc/MsDeformAttn/ms_deform_attn_cpu.h +35 -0
- csrc/MsDeformAttn/ms_deform_attn_cuda.cu +156 -0
- csrc/MsDeformAttn/ms_deform_attn_cuda.h +33 -0
- csrc/MsDeformAttn/ms_deform_im2col_cuda.cuh +1327 -0
- csrc/cuda_version.cu +7 -0
- csrc/vision.cpp +58 -0
- main_1.jpg +0 -0
- main_2.jpg +0 -0
- main_3.jpg +0 -0
- main_4.jpg +0 -0
- main_5.jpg +0 -0
- main_6.jpeg +0 -0
- models/__init__.py +0 -0
- models/blip2_decoder.py +190 -0
- models/contextdet_blip2.py +219 -0
- models/deformable_detr/README.md +23 -0
- models/deformable_detr/assigner.py +338 -0
- models/deformable_detr/backbone.py +163 -0
- models/deformable_detr/deformable_detr.py +582 -0
- models/deformable_detr/deformable_transformer.py +462 -0
- models/deformable_detr/matcher.py +101 -0
- models/deformable_detr/ms_deform_attn.py +412 -0
- models/deformable_detr/position_encoding.py +100 -0
- models/deformable_detr/segmentation.py +369 -0
- models/deformable_detr/swin.py +727 -0
- models/post_process.py +56 -0
- models/transformer.py +179 -0
- requirements.txt +6 -0
- setup.py +164 -0
- util/__init__.py +8 -0
- util/box_ops.py +96 -0
- util/misc.py +520 -0
.gitignore
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Initially taken from Github's Python gitignore file
|
2 |
+
|
3 |
+
# Byte-compiled / optimized / DLL files
|
4 |
+
__pycache__/
|
5 |
+
*.py[cod]
|
6 |
+
*$py.class
|
7 |
+
|
8 |
+
# C extensions
|
9 |
+
*.so
|
10 |
+
|
11 |
+
# tests and logs
|
12 |
+
tests/fixtures/cached_*_text.txt
|
13 |
+
logs/
|
14 |
+
lightning_logs/
|
15 |
+
lang_code_data/
|
16 |
+
|
17 |
+
# Distribution / packaging
|
18 |
+
.Python
|
19 |
+
build/
|
20 |
+
develop-eggs/
|
21 |
+
dist/
|
22 |
+
downloads/
|
23 |
+
eggs/
|
24 |
+
.eggs/
|
25 |
+
lib/
|
26 |
+
lib64/
|
27 |
+
parts/
|
28 |
+
sdist/
|
29 |
+
var/
|
30 |
+
wheels/
|
31 |
+
*.egg-info/
|
32 |
+
.installed.cfg
|
33 |
+
*.egg
|
34 |
+
MANIFEST
|
35 |
+
|
36 |
+
# PyInstaller
|
37 |
+
# Usually these files are written by a python script from a template
|
38 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
39 |
+
*.manifest
|
40 |
+
*.spec
|
41 |
+
|
42 |
+
# Installer logs
|
43 |
+
pip-log.txt
|
44 |
+
pip-delete-this-directory.txt
|
45 |
+
|
46 |
+
# Unit test / coverage reports
|
47 |
+
htmlcov/
|
48 |
+
.tox/
|
49 |
+
.nox/
|
50 |
+
.coverage
|
51 |
+
.coverage.*
|
52 |
+
.cache
|
53 |
+
nosetests.xml
|
54 |
+
coverage.xml
|
55 |
+
*.cover
|
56 |
+
.hypothesis/
|
57 |
+
.pytest_cache/
|
58 |
+
|
59 |
+
# Translations
|
60 |
+
*.mo
|
61 |
+
*.pot
|
62 |
+
|
63 |
+
# Django stuff:
|
64 |
+
*.log
|
65 |
+
local_settings.py
|
66 |
+
db.sqlite3
|
67 |
+
|
68 |
+
# Flask stuff:
|
69 |
+
instance/
|
70 |
+
.webassets-cache
|
71 |
+
|
72 |
+
# Scrapy stuff:
|
73 |
+
.scrapy
|
74 |
+
|
75 |
+
# Sphinx documentation
|
76 |
+
docs/_build/
|
77 |
+
|
78 |
+
# PyBuilder
|
79 |
+
target/
|
80 |
+
|
81 |
+
# Jupyter Notebook
|
82 |
+
.ipynb_checkpoints
|
83 |
+
|
84 |
+
# IPython
|
85 |
+
profile_default/
|
86 |
+
ipython_config.py
|
87 |
+
|
88 |
+
# pyenv
|
89 |
+
.python-version
|
90 |
+
|
91 |
+
# celery beat schedule file
|
92 |
+
celerybeat-schedule
|
93 |
+
|
94 |
+
# SageMath parsed files
|
95 |
+
*.sage.py
|
96 |
+
|
97 |
+
# Environments
|
98 |
+
.env
|
99 |
+
.venv
|
100 |
+
env/
|
101 |
+
venv/
|
102 |
+
ENV/
|
103 |
+
env.bak/
|
104 |
+
venv.bak/
|
105 |
+
|
106 |
+
# Spyder project settings
|
107 |
+
.spyderproject
|
108 |
+
.spyproject
|
109 |
+
|
110 |
+
# Rope project settings
|
111 |
+
.ropeproject
|
112 |
+
|
113 |
+
# mkdocs documentation
|
114 |
+
/site
|
115 |
+
|
116 |
+
# mypy
|
117 |
+
.mypy_cache/
|
118 |
+
.dmypy.json
|
119 |
+
dmypy.json
|
120 |
+
|
121 |
+
# Pyre type checker
|
122 |
+
.pyre/
|
123 |
+
|
124 |
+
# vscode
|
125 |
+
.vs
|
126 |
+
.vscode
|
127 |
+
|
128 |
+
# Pycharm
|
129 |
+
.idea
|
130 |
+
|
131 |
+
# TF code
|
132 |
+
tensorflow_code
|
133 |
+
|
134 |
+
# Models
|
135 |
+
proc_data
|
136 |
+
|
137 |
+
# examples
|
138 |
+
runs
|
139 |
+
/runs_old
|
140 |
+
/wandb
|
141 |
+
/examples/runs
|
142 |
+
/examples/**/*.args
|
143 |
+
/examples/rag/sweep
|
144 |
+
|
145 |
+
# data
|
146 |
+
/data
|
147 |
+
serialization_dir
|
148 |
+
|
149 |
+
# emacs
|
150 |
+
*.*~
|
151 |
+
debug.env
|
152 |
+
|
153 |
+
# vim
|
154 |
+
.*.swp
|
155 |
+
|
156 |
+
#ctags
|
157 |
+
tags
|
158 |
+
|
159 |
+
# pre-commit
|
160 |
+
.pre-commit*
|
161 |
+
|
162 |
+
# .lock
|
163 |
+
*.lock
|
164 |
+
|
165 |
+
# DS_Store (MacOS)
|
166 |
+
.DS_Store
|
167 |
+
|
168 |
+
# ruff
|
169 |
+
.ruff_cache
|
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: ContextDet Demo
|
3 |
-
emoji:
|
4 |
colorFrom: gray
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.32.0
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
title: ContextDet Demo
|
3 |
+
emoji: 📉
|
4 |
colorFrom: gray
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.32.0
|
8 |
app_file: app.py
|
app.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.system("python setup.py build develop --user")
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
from app_util import ContextDetDemo
|
7 |
+
|
8 |
+
header = '''
|
9 |
+
<div align=center>
|
10 |
+
<h1 style="font-weight: 900; margin-bottom: 7px;">
|
11 |
+
Contextual Object Detection with Multimodal Large Language Models
|
12 |
+
</h1>
|
13 |
+
</div>
|
14 |
+
'''
|
15 |
+
|
16 |
+
abstract = '''
|
17 |
+
🤗 This is the official Gradio demo for <b>Contextual Object Detection with Multimodal Large Language Models</b>.
|
18 |
+
|
19 |
+
🆒 Our goal is to promote object detection with better `context understanding` and enable `interactive feedback`
|
20 |
+
through `human language vocabulary`, all made possible by using multimodal large language models!
|
21 |
+
|
22 |
+
🤝 This demo is still under construction. Your comments or suggestions are welcome!
|
23 |
+
|
24 |
+
⚡ For faster inference without waiting in queue, you may duplicate the space and use the GPU setting:
|
25 |
+
<a href="https://huggingface.co/spaces/yuhangzang/ContextDet-Demo?duplicate=true">
|
26 |
+
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
27 |
+
<p/>
|
28 |
+
'''
|
29 |
+
|
30 |
+
footer = r'''
|
31 |
+
🦁 **Github Repo**
|
32 |
+
We would be grateful if you consider star our <a href="https://github.com/yuhangzang/ContextDET">github repo</a>
|
33 |
+
|
34 |
+
📝 **Citation**
|
35 |
+
We would be grateful if you consider citing our work if you find it useful:
|
36 |
+
```bibtex
|
37 |
+
@article{
|
38 |
+
}
|
39 |
+
```
|
40 |
+
|
41 |
+
📋 **License**
|
42 |
+
This project is licensed under
|
43 |
+
<a rel="license" href="https://github.com/sczhou/CodeFormer/blob/master/LICENSE">S-Lab License 1.0</a>.
|
44 |
+
Redistribution and use for non-commercial purposes should follow this license.
|
45 |
+
|
46 |
+
📧 **Contact**
|
47 |
+
If you have any questions, please feel free to contact Yuhang Zang <b>(zang0012@ntu.edu.sg)</b>.
|
48 |
+
'''
|
49 |
+
|
50 |
+
css = '''
|
51 |
+
h1#title {
|
52 |
+
text-align: center;
|
53 |
+
}
|
54 |
+
'''
|
55 |
+
|
56 |
+
cloze_samples = [
|
57 |
+
["main_4.jpg", "A teacher is helping a <mask> with her homework at desk."],
|
58 |
+
["main_5.jpg", "A man crossing a busy <mask> with his <mask> up."],
|
59 |
+
]
|
60 |
+
|
61 |
+
|
62 |
+
captioning_samples = [
|
63 |
+
["main_1.jpg"],
|
64 |
+
["main_2.jpg"],
|
65 |
+
["main_4.jpg"],
|
66 |
+
["main_6.jpeg"],
|
67 |
+
]
|
68 |
+
|
69 |
+
qa_samples = [
|
70 |
+
["main_5.jpg", "What is his career?"],
|
71 |
+
["main_6.jpeg", "What are they doing?"],
|
72 |
+
]
|
73 |
+
|
74 |
+
contextdet_model = ContextDetDemo('./ckpt.pth')
|
75 |
+
|
76 |
+
|
77 |
+
def inference_fn_select(image_input, text_input, task_button, history=[]):
|
78 |
+
return contextdet_model.forward(image_input, text_input, task_button, history)
|
79 |
+
|
80 |
+
|
81 |
+
def set_cloze_samples(example: list) -> dict:
|
82 |
+
return gr.Image.update(example[0]), gr.Textbox.update(example[1]), 'Cloze Test'
|
83 |
+
|
84 |
+
|
85 |
+
def set_captioning_samples(example: list) -> dict:
|
86 |
+
return gr.Image.update(example[0]), gr.Textbox.update(''), 'Captioning'
|
87 |
+
|
88 |
+
|
89 |
+
def set_qa_samples(example: list) -> dict:
|
90 |
+
return gr.Image.update(example[0]), gr.Textbox.update(example[1]), 'Question Answering'
|
91 |
+
|
92 |
+
|
93 |
+
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
94 |
+
gr.Markdown(header)
|
95 |
+
gr.Markdown(abstract)
|
96 |
+
state = gr.State([])
|
97 |
+
|
98 |
+
with gr.Row():
|
99 |
+
with gr.Column(scale=0.5, min_width=500):
|
100 |
+
image_input = gr.Image(type="pil", interactive=True, label="Upload an image 📁").style(height=250)
|
101 |
+
with gr.Column(scale=0.5, min_width=500):
|
102 |
+
chat_input = gr.Textbox(label="Type your text prompt ⤵️")
|
103 |
+
task_button = gr.Radio(label="Contextual Task type", interactive=True,
|
104 |
+
choices=['Cloze Test', 'Captioning', 'Question Answering'],
|
105 |
+
value='Cloze Test')
|
106 |
+
with gr.Row():
|
107 |
+
submit_button = gr.Button(value="🏃 Run", interactive=True, variant="primary")
|
108 |
+
clear_button = gr.Button(value="🔄 Clear", interactive=True)
|
109 |
+
|
110 |
+
with gr.Row():
|
111 |
+
with gr.Column(scale=0.5, min_width=500):
|
112 |
+
image_output = gr.Image(type='pil', interactive=False, label="Detection output")
|
113 |
+
with gr.Column(scale=0.5, min_width=500):
|
114 |
+
chat_output = gr.Chatbot(label="Text output").style(height=300)
|
115 |
+
|
116 |
+
with gr.Row():
|
117 |
+
with gr.Column(scale=0.33, min_width=330):
|
118 |
+
cloze_examples = gr.Dataset(
|
119 |
+
label='Contextual Cloze Test Examples',
|
120 |
+
components=[image_input, chat_input],
|
121 |
+
samples=cloze_samples,
|
122 |
+
)
|
123 |
+
with gr.Column(scale=0.33, min_width=330):
|
124 |
+
qa_examples = gr.Dataset(
|
125 |
+
label='Contextual Question Answering Examples',
|
126 |
+
components=[image_input, chat_input],
|
127 |
+
samples=qa_samples,
|
128 |
+
)
|
129 |
+
with gr.Column(scale=0.33, min_width=330):
|
130 |
+
captioning_examples = gr.Dataset(
|
131 |
+
label='Contextual Captioning Examples',
|
132 |
+
components=[image_input, ],
|
133 |
+
samples=captioning_samples,
|
134 |
+
)
|
135 |
+
|
136 |
+
submit_button.click(
|
137 |
+
inference_fn_select,
|
138 |
+
[image_input, chat_input, task_button, state],
|
139 |
+
[image_output, chat_output, state],
|
140 |
+
)
|
141 |
+
clear_button.click(
|
142 |
+
lambda: (None, None, "", [], [], 'Question Answering'),
|
143 |
+
[],
|
144 |
+
[image_input, image_output, chat_input, chat_output, state, task_button],
|
145 |
+
queue=False,
|
146 |
+
)
|
147 |
+
image_input.change(
|
148 |
+
lambda: (None, "", []),
|
149 |
+
[],
|
150 |
+
[image_output, chat_output, state],
|
151 |
+
queue=False,
|
152 |
+
)
|
153 |
+
cloze_examples.click(
|
154 |
+
fn=set_cloze_samples,
|
155 |
+
inputs=[cloze_examples],
|
156 |
+
outputs=[image_input, chat_input, task_button],
|
157 |
+
)
|
158 |
+
captioning_examples.click(
|
159 |
+
fn=set_captioning_samples,
|
160 |
+
inputs=[captioning_examples],
|
161 |
+
outputs=[image_input, chat_input, task_button],
|
162 |
+
)
|
163 |
+
qa_examples.click(
|
164 |
+
fn=set_qa_samples,
|
165 |
+
inputs=[qa_examples],
|
166 |
+
outputs=[image_input, chat_input, task_button],
|
167 |
+
)
|
168 |
+
|
169 |
+
gr.Markdown(footer)
|
170 |
+
|
171 |
+
demo.launch(enable_queue=True, share=False)
|
172 |
+
# demo.launch(enable_queue=True, share=True)
|
app_util.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import io
|
3 |
+
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torchvision.transforms as T
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
from models.blip2_decoder import BLIP2Decoder
|
11 |
+
from models.deformable_detr.backbone import build_backbone
|
12 |
+
from models.contextdet_blip2 import ContextDET
|
13 |
+
from models.post_process import CondNMSPostProcess
|
14 |
+
from models.transformer import build_ov_transformer
|
15 |
+
from util.misc import nested_tensor_from_tensor_list
|
16 |
+
|
17 |
+
|
18 |
+
def parse_args() -> argparse.Namespace:
|
19 |
+
parser = argparse.ArgumentParser()
|
20 |
+
parser.add_argument('--device', type=str, default='cpu')
|
21 |
+
|
22 |
+
parser.add_argument('--lr_backbone_names', default=["backbone.0"], type=str, nargs='+')
|
23 |
+
parser.add_argument('--lr_backbone', default=2e-5, type=float)
|
24 |
+
|
25 |
+
parser.add_argument('--with_box_refine', default=True, action='store_false')
|
26 |
+
parser.add_argument('--two_stage', default=True, action='store_false')
|
27 |
+
|
28 |
+
# * Backbone
|
29 |
+
parser.add_argument('--backbone', default='resnet50', type=str,
|
30 |
+
help="Name of the convolutional backbone to use")
|
31 |
+
parser.add_argument('--dilation', action='store_true',
|
32 |
+
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
|
33 |
+
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
|
34 |
+
help="Type of positional embedding to use on top of the image features")
|
35 |
+
parser.add_argument('--position_embedding_scale', default=2 * np.pi, type=float,
|
36 |
+
help="position / size * scale")
|
37 |
+
parser.add_argument('--num_feature_levels', default=5, type=int, help='number of feature levels')
|
38 |
+
|
39 |
+
# * Transformer
|
40 |
+
parser.add_argument('--enc_layers', default=6, type=int,
|
41 |
+
help="Number of encoding layers in the transformer")
|
42 |
+
parser.add_argument('--dec_layers', default=6, type=int,
|
43 |
+
help="Number of decoding layers in the transformer")
|
44 |
+
parser.add_argument('--dim_feedforward', default=2048, type=int,
|
45 |
+
help="Intermediate size of the feedforward layers in the transformer blocks")
|
46 |
+
parser.add_argument('--hidden_dim', default=256, type=int,
|
47 |
+
help="Size of the embeddings (dimension of the transformer)")
|
48 |
+
parser.add_argument('--dropout', default=0.0, type=float,
|
49 |
+
help="Dropout applied in the transformer")
|
50 |
+
parser.add_argument('--nheads', default=8, type=int,
|
51 |
+
help="Number of attention heads inside the transformer's attentions")
|
52 |
+
parser.add_argument('--num_queries', default=900, type=int,
|
53 |
+
help="Number of query slots")
|
54 |
+
parser.add_argument('--dec_n_points', default=4, type=int)
|
55 |
+
parser.add_argument('--enc_n_points', default=4, type=int)
|
56 |
+
|
57 |
+
# * Segmentation
|
58 |
+
parser.add_argument('--masks', action='store_true',
|
59 |
+
help="Train segmentation head if the flag is provided")
|
60 |
+
|
61 |
+
parser.add_argument('--assign_first_stage', default=True, action='store_false')
|
62 |
+
parser.add_argument('--assign_second_stage', default=True, action='store_false')
|
63 |
+
|
64 |
+
parser.add_argument('--name', default='ov')
|
65 |
+
parser.add_argument('--llm_name', default='bert-base-cased')
|
66 |
+
|
67 |
+
parser.add_argument('--resume', default='', type=str)
|
68 |
+
return parser.parse_args()
|
69 |
+
|
70 |
+
|
71 |
+
COLORS = [
|
72 |
+
[0.000, 0.447, 0.741],
|
73 |
+
[0.850, 0.325, 0.098],
|
74 |
+
[0.929, 0.694, 0.125],
|
75 |
+
[0.494, 0.184, 0.556],
|
76 |
+
[0.466, 0.674, 0.188],
|
77 |
+
[0.301, 0.745, 0.933]
|
78 |
+
]
|
79 |
+
|
80 |
+
|
81 |
+
def fig2img(fig):
|
82 |
+
buf = io.BytesIO()
|
83 |
+
fig.savefig(buf)
|
84 |
+
buf.seek(0)
|
85 |
+
img = Image.open(buf)
|
86 |
+
return img
|
87 |
+
|
88 |
+
|
89 |
+
def visualize_prediction(pil_img, output_dict, threshold=0.7):
|
90 |
+
keep = output_dict["scores"] > threshold
|
91 |
+
boxes = output_dict["boxes"][keep].tolist()
|
92 |
+
scores = output_dict["scores"][keep].tolist()
|
93 |
+
keep_list = keep.nonzero().squeeze(1).numpy().tolist()
|
94 |
+
labels = [output_dict["names"][i] for i in keep_list]
|
95 |
+
|
96 |
+
plt.figure(figsize=(12.8, 8))
|
97 |
+
plt.imshow(pil_img)
|
98 |
+
ax = plt.gca()
|
99 |
+
colors = COLORS * 100
|
100 |
+
for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors):
|
101 |
+
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3))
|
102 |
+
ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
|
103 |
+
plt.axis("off")
|
104 |
+
return fig2img(plt.gcf())
|
105 |
+
|
106 |
+
|
107 |
+
class ContextDetDemo():
|
108 |
+
def __init__(self, resume):
|
109 |
+
self.transform = T.Compose([
|
110 |
+
T.Resize(640),
|
111 |
+
T.ToTensor(),
|
112 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
113 |
+
])
|
114 |
+
|
115 |
+
args = parse_args()
|
116 |
+
|
117 |
+
args.llm_name = 'caption_coco_opt2.7b'
|
118 |
+
args.resume = resume
|
119 |
+
|
120 |
+
args.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
121 |
+
num_classes = 2
|
122 |
+
device = torch.device(args.device)
|
123 |
+
|
124 |
+
backbone = build_backbone(args)
|
125 |
+
transformer = build_ov_transformer(args)
|
126 |
+
llm_decoder = BLIP2Decoder(args.llm_name)
|
127 |
+
model = ContextDET(
|
128 |
+
backbone,
|
129 |
+
transformer,
|
130 |
+
num_classes=num_classes,
|
131 |
+
num_queries=args.num_queries,
|
132 |
+
num_feature_levels=args.num_feature_levels,
|
133 |
+
aux_loss=False,
|
134 |
+
with_box_refine=args.with_box_refine,
|
135 |
+
two_stage=args.two_stage,
|
136 |
+
llm_decoder=llm_decoder,
|
137 |
+
)
|
138 |
+
model = model.to(device)
|
139 |
+
|
140 |
+
checkpoint = torch.load(args.resume, map_location='cpu')
|
141 |
+
missing_keys, unexpected_keys = model.load_state_dict(checkpoint['model'], strict=False)
|
142 |
+
if len(missing_keys) > 0:
|
143 |
+
print('Missing Keys: {}'.format(missing_keys))
|
144 |
+
if len(unexpected_keys) > 0:
|
145 |
+
print('Unexpected Keys: {}'.format(unexpected_keys))
|
146 |
+
|
147 |
+
postprocessor = CondNMSPostProcess(args.num_queries)
|
148 |
+
|
149 |
+
self.model = model
|
150 |
+
self.model.eval()
|
151 |
+
self.postprocessor = postprocessor
|
152 |
+
|
153 |
+
def forward(self, image, text, task_button, history, threshold=0.3):
|
154 |
+
samples = self.transform(image).unsqueeze(0)
|
155 |
+
samples = nested_tensor_from_tensor_list(samples)
|
156 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
157 |
+
samples = samples.to(device)
|
158 |
+
vis = self.model.llm_decoder.vis_processors
|
159 |
+
|
160 |
+
if task_button == "Question Answering":
|
161 |
+
text = f"{text} Answer:"
|
162 |
+
history.append(text)
|
163 |
+
# prompt = " ".join(history)
|
164 |
+
prompt = text
|
165 |
+
elif task_button == "Captioning":
|
166 |
+
prompt = "A photo of"
|
167 |
+
else:
|
168 |
+
prompt = text
|
169 |
+
|
170 |
+
blip2_samples = {
|
171 |
+
'image': vis['eval'](image)[None, :].to(device),
|
172 |
+
'prompt': [prompt],
|
173 |
+
}
|
174 |
+
outputs = self.model(samples, blip2_samples, mask_infos=None, task_button=task_button)
|
175 |
+
|
176 |
+
mask_infos = outputs['mask_infos_pred']
|
177 |
+
pred_names = [list(mask_info.values()) for mask_info in mask_infos]
|
178 |
+
orig_target_sizes = torch.tensor([tuple(reversed(image.size))]).to(device)
|
179 |
+
results = self.postprocessor(outputs, orig_target_sizes, pred_names, mask_infos)[0]
|
180 |
+
image_vis = visualize_prediction(image, results, threshold)
|
181 |
+
|
182 |
+
out_text = outputs['output_text'][0]
|
183 |
+
if task_button == "Cloze Test":
|
184 |
+
history = []
|
185 |
+
chat = [
|
186 |
+
(prompt, out_text),
|
187 |
+
]
|
188 |
+
elif task_button == "Captioning":
|
189 |
+
history = []
|
190 |
+
chat = [
|
191 |
+
("please describe the image", out_text),
|
192 |
+
]
|
193 |
+
elif task_button == "Question Answering":
|
194 |
+
history += [out_text]
|
195 |
+
chat = [
|
196 |
+
(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)
|
197 |
+
]
|
198 |
+
else:
|
199 |
+
history = []
|
200 |
+
chat = []
|
201 |
+
return image_vis, chat, history
|
ckpt.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f6cdf5e828bf06684692fa99ead6e80d3ae1382f0f2b129cb39ee8675019deb
|
3 |
+
size 248034729
|
csrc/MsDeformAttn/ms_deform_attn.h
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************************************
|
7 |
+
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
**************************************************************************************************
|
9 |
+
*/
|
10 |
+
|
11 |
+
#pragma once
|
12 |
+
|
13 |
+
#include "ms_deform_attn_cpu.h"
|
14 |
+
|
15 |
+
#ifdef WITH_CUDA
|
16 |
+
#include "ms_deform_attn_cuda.h"
|
17 |
+
#endif
|
18 |
+
|
19 |
+
namespace groundingdino {
|
20 |
+
|
21 |
+
at::Tensor
|
22 |
+
ms_deform_attn_forward(
|
23 |
+
const at::Tensor &value,
|
24 |
+
const at::Tensor &spatial_shapes,
|
25 |
+
const at::Tensor &level_start_index,
|
26 |
+
const at::Tensor &sampling_loc,
|
27 |
+
const at::Tensor &attn_weight,
|
28 |
+
const int im2col_step)
|
29 |
+
{
|
30 |
+
if (value.type().is_cuda())
|
31 |
+
{
|
32 |
+
#ifdef WITH_CUDA
|
33 |
+
return ms_deform_attn_cuda_forward(
|
34 |
+
value, spatial_shapes, level_start_index, sampling_loc, attn_weight, im2col_step);
|
35 |
+
#else
|
36 |
+
AT_ERROR("Not compiled with GPU support");
|
37 |
+
#endif
|
38 |
+
}
|
39 |
+
AT_ERROR("Not implemented on the CPU");
|
40 |
+
}
|
41 |
+
|
42 |
+
std::vector<at::Tensor>
|
43 |
+
ms_deform_attn_backward(
|
44 |
+
const at::Tensor &value,
|
45 |
+
const at::Tensor &spatial_shapes,
|
46 |
+
const at::Tensor &level_start_index,
|
47 |
+
const at::Tensor &sampling_loc,
|
48 |
+
const at::Tensor &attn_weight,
|
49 |
+
const at::Tensor &grad_output,
|
50 |
+
const int im2col_step)
|
51 |
+
{
|
52 |
+
if (value.type().is_cuda())
|
53 |
+
{
|
54 |
+
#ifdef WITH_CUDA
|
55 |
+
return ms_deform_attn_cuda_backward(
|
56 |
+
value, spatial_shapes, level_start_index, sampling_loc, attn_weight, grad_output, im2col_step);
|
57 |
+
#else
|
58 |
+
AT_ERROR("Not compiled with GPU support");
|
59 |
+
#endif
|
60 |
+
}
|
61 |
+
AT_ERROR("Not implemented on the CPU");
|
62 |
+
}
|
63 |
+
|
64 |
+
} // namespace groundingdino
|
csrc/MsDeformAttn/ms_deform_attn_cpu.cpp
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************************************
|
7 |
+
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
**************************************************************************************************
|
9 |
+
*/
|
10 |
+
|
11 |
+
#include <vector>
|
12 |
+
|
13 |
+
#include <ATen/ATen.h>
|
14 |
+
#include <ATen/cuda/CUDAContext.h>
|
15 |
+
|
16 |
+
namespace groundingdino {
|
17 |
+
|
18 |
+
at::Tensor
|
19 |
+
ms_deform_attn_cpu_forward(
|
20 |
+
const at::Tensor &value,
|
21 |
+
const at::Tensor &spatial_shapes,
|
22 |
+
const at::Tensor &level_start_index,
|
23 |
+
const at::Tensor &sampling_loc,
|
24 |
+
const at::Tensor &attn_weight,
|
25 |
+
const int im2col_step)
|
26 |
+
{
|
27 |
+
AT_ERROR("Not implement on cpu");
|
28 |
+
}
|
29 |
+
|
30 |
+
std::vector<at::Tensor>
|
31 |
+
ms_deform_attn_cpu_backward(
|
32 |
+
const at::Tensor &value,
|
33 |
+
const at::Tensor &spatial_shapes,
|
34 |
+
const at::Tensor &level_start_index,
|
35 |
+
const at::Tensor &sampling_loc,
|
36 |
+
const at::Tensor &attn_weight,
|
37 |
+
const at::Tensor &grad_output,
|
38 |
+
const int im2col_step)
|
39 |
+
{
|
40 |
+
AT_ERROR("Not implement on cpu");
|
41 |
+
}
|
42 |
+
|
43 |
+
} // namespace groundingdino
|
csrc/MsDeformAttn/ms_deform_attn_cpu.h
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************************************
|
7 |
+
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
**************************************************************************************************
|
9 |
+
*/
|
10 |
+
|
11 |
+
#pragma once
|
12 |
+
#include <torch/extension.h>
|
13 |
+
|
14 |
+
namespace groundingdino {
|
15 |
+
|
16 |
+
at::Tensor
|
17 |
+
ms_deform_attn_cpu_forward(
|
18 |
+
const at::Tensor &value,
|
19 |
+
const at::Tensor &spatial_shapes,
|
20 |
+
const at::Tensor &level_start_index,
|
21 |
+
const at::Tensor &sampling_loc,
|
22 |
+
const at::Tensor &attn_weight,
|
23 |
+
const int im2col_step);
|
24 |
+
|
25 |
+
std::vector<at::Tensor>
|
26 |
+
ms_deform_attn_cpu_backward(
|
27 |
+
const at::Tensor &value,
|
28 |
+
const at::Tensor &spatial_shapes,
|
29 |
+
const at::Tensor &level_start_index,
|
30 |
+
const at::Tensor &sampling_loc,
|
31 |
+
const at::Tensor &attn_weight,
|
32 |
+
const at::Tensor &grad_output,
|
33 |
+
const int im2col_step);
|
34 |
+
|
35 |
+
} // namespace groundingdino
|
csrc/MsDeformAttn/ms_deform_attn_cuda.cu
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************************************
|
7 |
+
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
**************************************************************************************************
|
9 |
+
*/
|
10 |
+
|
11 |
+
#include <vector>
|
12 |
+
#include "ms_deform_im2col_cuda.cuh"
|
13 |
+
|
14 |
+
#include <ATen/ATen.h>
|
15 |
+
#include <ATen/cuda/CUDAContext.h>
|
16 |
+
#include <cuda.h>
|
17 |
+
#include <cuda_runtime.h>
|
18 |
+
|
19 |
+
namespace groundingdino {
|
20 |
+
|
21 |
+
at::Tensor ms_deform_attn_cuda_forward(
|
22 |
+
const at::Tensor &value,
|
23 |
+
const at::Tensor &spatial_shapes,
|
24 |
+
const at::Tensor &level_start_index,
|
25 |
+
const at::Tensor &sampling_loc,
|
26 |
+
const at::Tensor &attn_weight,
|
27 |
+
const int im2col_step)
|
28 |
+
{
|
29 |
+
AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
|
30 |
+
AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous");
|
31 |
+
AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous");
|
32 |
+
AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous");
|
33 |
+
AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous");
|
34 |
+
|
35 |
+
AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor");
|
36 |
+
AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor");
|
37 |
+
AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor");
|
38 |
+
AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor");
|
39 |
+
AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor");
|
40 |
+
|
41 |
+
const int batch = value.size(0);
|
42 |
+
const int spatial_size = value.size(1);
|
43 |
+
const int num_heads = value.size(2);
|
44 |
+
const int channels = value.size(3);
|
45 |
+
|
46 |
+
const int num_levels = spatial_shapes.size(0);
|
47 |
+
|
48 |
+
const int num_query = sampling_loc.size(1);
|
49 |
+
const int num_point = sampling_loc.size(4);
|
50 |
+
|
51 |
+
const int im2col_step_ = std::min(batch, im2col_step);
|
52 |
+
|
53 |
+
AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_);
|
54 |
+
|
55 |
+
auto output = at::zeros({batch, num_query, num_heads, channels}, value.options());
|
56 |
+
|
57 |
+
const int batch_n = im2col_step_;
|
58 |
+
auto output_n = output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels});
|
59 |
+
auto per_value_size = spatial_size * num_heads * channels;
|
60 |
+
auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2;
|
61 |
+
auto per_attn_weight_size = num_query * num_heads * num_levels * num_point;
|
62 |
+
for (int n = 0; n < batch/im2col_step_; ++n)
|
63 |
+
{
|
64 |
+
auto columns = output_n.select(0, n);
|
65 |
+
AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_forward_cuda", ([&] {
|
66 |
+
ms_deformable_im2col_cuda(at::cuda::getCurrentCUDAStream(),
|
67 |
+
value.data<scalar_t>() + n * im2col_step_ * per_value_size,
|
68 |
+
spatial_shapes.data<int64_t>(),
|
69 |
+
level_start_index.data<int64_t>(),
|
70 |
+
sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
|
71 |
+
attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size,
|
72 |
+
batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point,
|
73 |
+
columns.data<scalar_t>());
|
74 |
+
|
75 |
+
}));
|
76 |
+
}
|
77 |
+
|
78 |
+
output = output.view({batch, num_query, num_heads*channels});
|
79 |
+
|
80 |
+
return output;
|
81 |
+
}
|
82 |
+
|
83 |
+
|
84 |
+
std::vector<at::Tensor> ms_deform_attn_cuda_backward(
|
85 |
+
const at::Tensor &value,
|
86 |
+
const at::Tensor &spatial_shapes,
|
87 |
+
const at::Tensor &level_start_index,
|
88 |
+
const at::Tensor &sampling_loc,
|
89 |
+
const at::Tensor &attn_weight,
|
90 |
+
const at::Tensor &grad_output,
|
91 |
+
const int im2col_step)
|
92 |
+
{
|
93 |
+
|
94 |
+
AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
|
95 |
+
AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous");
|
96 |
+
AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous");
|
97 |
+
AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous");
|
98 |
+
AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous");
|
99 |
+
AT_ASSERTM(grad_output.is_contiguous(), "grad_output tensor has to be contiguous");
|
100 |
+
|
101 |
+
AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor");
|
102 |
+
AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor");
|
103 |
+
AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor");
|
104 |
+
AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor");
|
105 |
+
AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor");
|
106 |
+
AT_ASSERTM(grad_output.type().is_cuda(), "grad_output must be a CUDA tensor");
|
107 |
+
|
108 |
+
const int batch = value.size(0);
|
109 |
+
const int spatial_size = value.size(1);
|
110 |
+
const int num_heads = value.size(2);
|
111 |
+
const int channels = value.size(3);
|
112 |
+
|
113 |
+
const int num_levels = spatial_shapes.size(0);
|
114 |
+
|
115 |
+
const int num_query = sampling_loc.size(1);
|
116 |
+
const int num_point = sampling_loc.size(4);
|
117 |
+
|
118 |
+
const int im2col_step_ = std::min(batch, im2col_step);
|
119 |
+
|
120 |
+
AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_);
|
121 |
+
|
122 |
+
auto grad_value = at::zeros_like(value);
|
123 |
+
auto grad_sampling_loc = at::zeros_like(sampling_loc);
|
124 |
+
auto grad_attn_weight = at::zeros_like(attn_weight);
|
125 |
+
|
126 |
+
const int batch_n = im2col_step_;
|
127 |
+
auto per_value_size = spatial_size * num_heads * channels;
|
128 |
+
auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2;
|
129 |
+
auto per_attn_weight_size = num_query * num_heads * num_levels * num_point;
|
130 |
+
auto grad_output_n = grad_output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels});
|
131 |
+
|
132 |
+
for (int n = 0; n < batch/im2col_step_; ++n)
|
133 |
+
{
|
134 |
+
auto grad_output_g = grad_output_n.select(0, n);
|
135 |
+
AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_backward_cuda", ([&] {
|
136 |
+
ms_deformable_col2im_cuda(at::cuda::getCurrentCUDAStream(),
|
137 |
+
grad_output_g.data<scalar_t>(),
|
138 |
+
value.data<scalar_t>() + n * im2col_step_ * per_value_size,
|
139 |
+
spatial_shapes.data<int64_t>(),
|
140 |
+
level_start_index.data<int64_t>(),
|
141 |
+
sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
|
142 |
+
attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size,
|
143 |
+
batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point,
|
144 |
+
grad_value.data<scalar_t>() + n * im2col_step_ * per_value_size,
|
145 |
+
grad_sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
|
146 |
+
grad_attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size);
|
147 |
+
|
148 |
+
}));
|
149 |
+
}
|
150 |
+
|
151 |
+
return {
|
152 |
+
grad_value, grad_sampling_loc, grad_attn_weight
|
153 |
+
};
|
154 |
+
}
|
155 |
+
|
156 |
+
} // namespace groundingdino
|
csrc/MsDeformAttn/ms_deform_attn_cuda.h
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************************************
|
7 |
+
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
**************************************************************************************************
|
9 |
+
*/
|
10 |
+
|
11 |
+
#pragma once
|
12 |
+
#include <torch/extension.h>
|
13 |
+
|
14 |
+
namespace groundingdino {
|
15 |
+
|
16 |
+
at::Tensor ms_deform_attn_cuda_forward(
|
17 |
+
const at::Tensor &value,
|
18 |
+
const at::Tensor &spatial_shapes,
|
19 |
+
const at::Tensor &level_start_index,
|
20 |
+
const at::Tensor &sampling_loc,
|
21 |
+
const at::Tensor &attn_weight,
|
22 |
+
const int im2col_step);
|
23 |
+
|
24 |
+
std::vector<at::Tensor> ms_deform_attn_cuda_backward(
|
25 |
+
const at::Tensor &value,
|
26 |
+
const at::Tensor &spatial_shapes,
|
27 |
+
const at::Tensor &level_start_index,
|
28 |
+
const at::Tensor &sampling_loc,
|
29 |
+
const at::Tensor &attn_weight,
|
30 |
+
const at::Tensor &grad_output,
|
31 |
+
const int im2col_step);
|
32 |
+
|
33 |
+
} // namespace groundingdino
|
csrc/MsDeformAttn/ms_deform_im2col_cuda.cuh
ADDED
@@ -0,0 +1,1327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************
|
7 |
+
* Modified from DCN (https://github.com/msracver/Deformable-ConvNets)
|
8 |
+
* Copyright (c) 2018 Microsoft
|
9 |
+
**************************************************************************
|
10 |
+
*/
|
11 |
+
|
12 |
+
#include <cstdio>
|
13 |
+
#include <algorithm>
|
14 |
+
#include <cstring>
|
15 |
+
|
16 |
+
#include <ATen/ATen.h>
|
17 |
+
#include <ATen/cuda/CUDAContext.h>
|
18 |
+
|
19 |
+
#include <THC/THCAtomics.cuh>
|
20 |
+
|
21 |
+
#define CUDA_KERNEL_LOOP(i, n) \
|
22 |
+
for (int i = blockIdx.x * blockDim.x + threadIdx.x; \
|
23 |
+
i < (n); \
|
24 |
+
i += blockDim.x * gridDim.x)
|
25 |
+
|
26 |
+
const int CUDA_NUM_THREADS = 1024;
|
27 |
+
inline int GET_BLOCKS(const int N, const int num_threads)
|
28 |
+
{
|
29 |
+
return (N + num_threads - 1) / num_threads;
|
30 |
+
}
|
31 |
+
|
32 |
+
|
33 |
+
template <typename scalar_t>
|
34 |
+
__device__ scalar_t ms_deform_attn_im2col_bilinear(const scalar_t* &bottom_data,
|
35 |
+
const int &height, const int &width, const int &nheads, const int &channels,
|
36 |
+
const scalar_t &h, const scalar_t &w, const int &m, const int &c)
|
37 |
+
{
|
38 |
+
const int h_low = floor(h);
|
39 |
+
const int w_low = floor(w);
|
40 |
+
const int h_high = h_low + 1;
|
41 |
+
const int w_high = w_low + 1;
|
42 |
+
|
43 |
+
const scalar_t lh = h - h_low;
|
44 |
+
const scalar_t lw = w - w_low;
|
45 |
+
const scalar_t hh = 1 - lh, hw = 1 - lw;
|
46 |
+
|
47 |
+
const int w_stride = nheads * channels;
|
48 |
+
const int h_stride = width * w_stride;
|
49 |
+
const int h_low_ptr_offset = h_low * h_stride;
|
50 |
+
const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
|
51 |
+
const int w_low_ptr_offset = w_low * w_stride;
|
52 |
+
const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
|
53 |
+
const int base_ptr = m * channels + c;
|
54 |
+
|
55 |
+
scalar_t v1 = 0;
|
56 |
+
if (h_low >= 0 && w_low >= 0)
|
57 |
+
{
|
58 |
+
const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
|
59 |
+
v1 = bottom_data[ptr1];
|
60 |
+
}
|
61 |
+
scalar_t v2 = 0;
|
62 |
+
if (h_low >= 0 && w_high <= width - 1)
|
63 |
+
{
|
64 |
+
const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
|
65 |
+
v2 = bottom_data[ptr2];
|
66 |
+
}
|
67 |
+
scalar_t v3 = 0;
|
68 |
+
if (h_high <= height - 1 && w_low >= 0)
|
69 |
+
{
|
70 |
+
const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
|
71 |
+
v3 = bottom_data[ptr3];
|
72 |
+
}
|
73 |
+
scalar_t v4 = 0;
|
74 |
+
if (h_high <= height - 1 && w_high <= width - 1)
|
75 |
+
{
|
76 |
+
const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
|
77 |
+
v4 = bottom_data[ptr4];
|
78 |
+
}
|
79 |
+
|
80 |
+
const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
|
81 |
+
|
82 |
+
const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
|
83 |
+
return val;
|
84 |
+
}
|
85 |
+
|
86 |
+
|
87 |
+
template <typename scalar_t>
|
88 |
+
__device__ void ms_deform_attn_col2im_bilinear(const scalar_t* &bottom_data,
|
89 |
+
const int &height, const int &width, const int &nheads, const int &channels,
|
90 |
+
const scalar_t &h, const scalar_t &w, const int &m, const int &c,
|
91 |
+
const scalar_t &top_grad,
|
92 |
+
const scalar_t &attn_weight,
|
93 |
+
scalar_t* &grad_value,
|
94 |
+
scalar_t* grad_sampling_loc,
|
95 |
+
scalar_t* grad_attn_weight)
|
96 |
+
{
|
97 |
+
const int h_low = floor(h);
|
98 |
+
const int w_low = floor(w);
|
99 |
+
const int h_high = h_low + 1;
|
100 |
+
const int w_high = w_low + 1;
|
101 |
+
|
102 |
+
const scalar_t lh = h - h_low;
|
103 |
+
const scalar_t lw = w - w_low;
|
104 |
+
const scalar_t hh = 1 - lh, hw = 1 - lw;
|
105 |
+
|
106 |
+
const int w_stride = nheads * channels;
|
107 |
+
const int h_stride = width * w_stride;
|
108 |
+
const int h_low_ptr_offset = h_low * h_stride;
|
109 |
+
const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
|
110 |
+
const int w_low_ptr_offset = w_low * w_stride;
|
111 |
+
const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
|
112 |
+
const int base_ptr = m * channels + c;
|
113 |
+
|
114 |
+
const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
|
115 |
+
const scalar_t top_grad_value = top_grad * attn_weight;
|
116 |
+
scalar_t grad_h_weight = 0, grad_w_weight = 0;
|
117 |
+
|
118 |
+
scalar_t v1 = 0;
|
119 |
+
if (h_low >= 0 && w_low >= 0)
|
120 |
+
{
|
121 |
+
const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
|
122 |
+
v1 = bottom_data[ptr1];
|
123 |
+
grad_h_weight -= hw * v1;
|
124 |
+
grad_w_weight -= hh * v1;
|
125 |
+
atomicAdd(grad_value+ptr1, w1*top_grad_value);
|
126 |
+
}
|
127 |
+
scalar_t v2 = 0;
|
128 |
+
if (h_low >= 0 && w_high <= width - 1)
|
129 |
+
{
|
130 |
+
const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
|
131 |
+
v2 = bottom_data[ptr2];
|
132 |
+
grad_h_weight -= lw * v2;
|
133 |
+
grad_w_weight += hh * v2;
|
134 |
+
atomicAdd(grad_value+ptr2, w2*top_grad_value);
|
135 |
+
}
|
136 |
+
scalar_t v3 = 0;
|
137 |
+
if (h_high <= height - 1 && w_low >= 0)
|
138 |
+
{
|
139 |
+
const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
|
140 |
+
v3 = bottom_data[ptr3];
|
141 |
+
grad_h_weight += hw * v3;
|
142 |
+
grad_w_weight -= lh * v3;
|
143 |
+
atomicAdd(grad_value+ptr3, w3*top_grad_value);
|
144 |
+
}
|
145 |
+
scalar_t v4 = 0;
|
146 |
+
if (h_high <= height - 1 && w_high <= width - 1)
|
147 |
+
{
|
148 |
+
const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
|
149 |
+
v4 = bottom_data[ptr4];
|
150 |
+
grad_h_weight += lw * v4;
|
151 |
+
grad_w_weight += lh * v4;
|
152 |
+
atomicAdd(grad_value+ptr4, w4*top_grad_value);
|
153 |
+
}
|
154 |
+
|
155 |
+
const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
|
156 |
+
*grad_attn_weight = top_grad * val;
|
157 |
+
*grad_sampling_loc = width * grad_w_weight * top_grad_value;
|
158 |
+
*(grad_sampling_loc + 1) = height * grad_h_weight * top_grad_value;
|
159 |
+
}
|
160 |
+
|
161 |
+
|
162 |
+
template <typename scalar_t>
|
163 |
+
__device__ void ms_deform_attn_col2im_bilinear_gm(const scalar_t* &bottom_data,
|
164 |
+
const int &height, const int &width, const int &nheads, const int &channels,
|
165 |
+
const scalar_t &h, const scalar_t &w, const int &m, const int &c,
|
166 |
+
const scalar_t &top_grad,
|
167 |
+
const scalar_t &attn_weight,
|
168 |
+
scalar_t* &grad_value,
|
169 |
+
scalar_t* grad_sampling_loc,
|
170 |
+
scalar_t* grad_attn_weight)
|
171 |
+
{
|
172 |
+
const int h_low = floor(h);
|
173 |
+
const int w_low = floor(w);
|
174 |
+
const int h_high = h_low + 1;
|
175 |
+
const int w_high = w_low + 1;
|
176 |
+
|
177 |
+
const scalar_t lh = h - h_low;
|
178 |
+
const scalar_t lw = w - w_low;
|
179 |
+
const scalar_t hh = 1 - lh, hw = 1 - lw;
|
180 |
+
|
181 |
+
const int w_stride = nheads * channels;
|
182 |
+
const int h_stride = width * w_stride;
|
183 |
+
const int h_low_ptr_offset = h_low * h_stride;
|
184 |
+
const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
|
185 |
+
const int w_low_ptr_offset = w_low * w_stride;
|
186 |
+
const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
|
187 |
+
const int base_ptr = m * channels + c;
|
188 |
+
|
189 |
+
const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
|
190 |
+
const scalar_t top_grad_value = top_grad * attn_weight;
|
191 |
+
scalar_t grad_h_weight = 0, grad_w_weight = 0;
|
192 |
+
|
193 |
+
scalar_t v1 = 0;
|
194 |
+
if (h_low >= 0 && w_low >= 0)
|
195 |
+
{
|
196 |
+
const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
|
197 |
+
v1 = bottom_data[ptr1];
|
198 |
+
grad_h_weight -= hw * v1;
|
199 |
+
grad_w_weight -= hh * v1;
|
200 |
+
atomicAdd(grad_value+ptr1, w1*top_grad_value);
|
201 |
+
}
|
202 |
+
scalar_t v2 = 0;
|
203 |
+
if (h_low >= 0 && w_high <= width - 1)
|
204 |
+
{
|
205 |
+
const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
|
206 |
+
v2 = bottom_data[ptr2];
|
207 |
+
grad_h_weight -= lw * v2;
|
208 |
+
grad_w_weight += hh * v2;
|
209 |
+
atomicAdd(grad_value+ptr2, w2*top_grad_value);
|
210 |
+
}
|
211 |
+
scalar_t v3 = 0;
|
212 |
+
if (h_high <= height - 1 && w_low >= 0)
|
213 |
+
{
|
214 |
+
const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
|
215 |
+
v3 = bottom_data[ptr3];
|
216 |
+
grad_h_weight += hw * v3;
|
217 |
+
grad_w_weight -= lh * v3;
|
218 |
+
atomicAdd(grad_value+ptr3, w3*top_grad_value);
|
219 |
+
}
|
220 |
+
scalar_t v4 = 0;
|
221 |
+
if (h_high <= height - 1 && w_high <= width - 1)
|
222 |
+
{
|
223 |
+
const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
|
224 |
+
v4 = bottom_data[ptr4];
|
225 |
+
grad_h_weight += lw * v4;
|
226 |
+
grad_w_weight += lh * v4;
|
227 |
+
atomicAdd(grad_value+ptr4, w4*top_grad_value);
|
228 |
+
}
|
229 |
+
|
230 |
+
const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
|
231 |
+
atomicAdd(grad_attn_weight, top_grad * val);
|
232 |
+
atomicAdd(grad_sampling_loc, width * grad_w_weight * top_grad_value);
|
233 |
+
atomicAdd(grad_sampling_loc + 1, height * grad_h_weight * top_grad_value);
|
234 |
+
}
|
235 |
+
|
236 |
+
|
237 |
+
template <typename scalar_t>
|
238 |
+
__global__ void ms_deformable_im2col_gpu_kernel(const int n,
|
239 |
+
const scalar_t *data_value,
|
240 |
+
const int64_t *data_spatial_shapes,
|
241 |
+
const int64_t *data_level_start_index,
|
242 |
+
const scalar_t *data_sampling_loc,
|
243 |
+
const scalar_t *data_attn_weight,
|
244 |
+
const int batch_size,
|
245 |
+
const int spatial_size,
|
246 |
+
const int num_heads,
|
247 |
+
const int channels,
|
248 |
+
const int num_levels,
|
249 |
+
const int num_query,
|
250 |
+
const int num_point,
|
251 |
+
scalar_t *data_col)
|
252 |
+
{
|
253 |
+
CUDA_KERNEL_LOOP(index, n)
|
254 |
+
{
|
255 |
+
int _temp = index;
|
256 |
+
const int c_col = _temp % channels;
|
257 |
+
_temp /= channels;
|
258 |
+
const int sampling_index = _temp;
|
259 |
+
const int m_col = _temp % num_heads;
|
260 |
+
_temp /= num_heads;
|
261 |
+
const int q_col = _temp % num_query;
|
262 |
+
_temp /= num_query;
|
263 |
+
const int b_col = _temp;
|
264 |
+
|
265 |
+
scalar_t *data_col_ptr = data_col + index;
|
266 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
267 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
268 |
+
const int qid_stride = num_heads * channels;
|
269 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
270 |
+
scalar_t col = 0;
|
271 |
+
|
272 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
273 |
+
{
|
274 |
+
const int level_start_id = data_level_start_index[l_col];
|
275 |
+
const int spatial_h_ptr = l_col << 1;
|
276 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
277 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
278 |
+
const scalar_t *data_value_ptr = data_value + (data_value_ptr_init_offset + level_start_id * qid_stride);
|
279 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
280 |
+
{
|
281 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
282 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
283 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
284 |
+
|
285 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
286 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
287 |
+
|
288 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
289 |
+
{
|
290 |
+
col += ms_deform_attn_im2col_bilinear(data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col) * weight;
|
291 |
+
}
|
292 |
+
|
293 |
+
data_weight_ptr += 1;
|
294 |
+
data_loc_w_ptr += 2;
|
295 |
+
}
|
296 |
+
}
|
297 |
+
*data_col_ptr = col;
|
298 |
+
}
|
299 |
+
}
|
300 |
+
|
301 |
+
template <typename scalar_t, unsigned int blockSize>
|
302 |
+
__global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1(const int n,
|
303 |
+
const scalar_t *grad_col,
|
304 |
+
const scalar_t *data_value,
|
305 |
+
const int64_t *data_spatial_shapes,
|
306 |
+
const int64_t *data_level_start_index,
|
307 |
+
const scalar_t *data_sampling_loc,
|
308 |
+
const scalar_t *data_attn_weight,
|
309 |
+
const int batch_size,
|
310 |
+
const int spatial_size,
|
311 |
+
const int num_heads,
|
312 |
+
const int channels,
|
313 |
+
const int num_levels,
|
314 |
+
const int num_query,
|
315 |
+
const int num_point,
|
316 |
+
scalar_t *grad_value,
|
317 |
+
scalar_t *grad_sampling_loc,
|
318 |
+
scalar_t *grad_attn_weight)
|
319 |
+
{
|
320 |
+
CUDA_KERNEL_LOOP(index, n)
|
321 |
+
{
|
322 |
+
__shared__ scalar_t cache_grad_sampling_loc[blockSize * 2];
|
323 |
+
__shared__ scalar_t cache_grad_attn_weight[blockSize];
|
324 |
+
unsigned int tid = threadIdx.x;
|
325 |
+
int _temp = index;
|
326 |
+
const int c_col = _temp % channels;
|
327 |
+
_temp /= channels;
|
328 |
+
const int sampling_index = _temp;
|
329 |
+
const int m_col = _temp % num_heads;
|
330 |
+
_temp /= num_heads;
|
331 |
+
const int q_col = _temp % num_query;
|
332 |
+
_temp /= num_query;
|
333 |
+
const int b_col = _temp;
|
334 |
+
|
335 |
+
const scalar_t top_grad = grad_col[index];
|
336 |
+
|
337 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
338 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
339 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
340 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
341 |
+
grad_attn_weight += grad_sampling_ptr;
|
342 |
+
const int grad_weight_stride = 1;
|
343 |
+
const int grad_loc_stride = 2;
|
344 |
+
const int qid_stride = num_heads * channels;
|
345 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
346 |
+
|
347 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
348 |
+
{
|
349 |
+
const int level_start_id = data_level_start_index[l_col];
|
350 |
+
const int spatial_h_ptr = l_col << 1;
|
351 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
352 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
353 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
354 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
355 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
356 |
+
|
357 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
358 |
+
{
|
359 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
360 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
361 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
362 |
+
|
363 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
364 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
365 |
+
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
|
366 |
+
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
|
367 |
+
*(cache_grad_attn_weight+threadIdx.x)=0;
|
368 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
369 |
+
{
|
370 |
+
ms_deform_attn_col2im_bilinear(
|
371 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
372 |
+
top_grad, weight, grad_value_ptr,
|
373 |
+
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
|
374 |
+
}
|
375 |
+
|
376 |
+
__syncthreads();
|
377 |
+
if (tid == 0)
|
378 |
+
{
|
379 |
+
scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0];
|
380 |
+
int sid=2;
|
381 |
+
for (unsigned int tid = 1; tid < blockSize; ++tid)
|
382 |
+
{
|
383 |
+
_grad_w += cache_grad_sampling_loc[sid];
|
384 |
+
_grad_h += cache_grad_sampling_loc[sid + 1];
|
385 |
+
_grad_a += cache_grad_attn_weight[tid];
|
386 |
+
sid += 2;
|
387 |
+
}
|
388 |
+
|
389 |
+
|
390 |
+
*grad_sampling_loc = _grad_w;
|
391 |
+
*(grad_sampling_loc + 1) = _grad_h;
|
392 |
+
*grad_attn_weight = _grad_a;
|
393 |
+
}
|
394 |
+
__syncthreads();
|
395 |
+
|
396 |
+
data_weight_ptr += 1;
|
397 |
+
data_loc_w_ptr += 2;
|
398 |
+
grad_attn_weight += grad_weight_stride;
|
399 |
+
grad_sampling_loc += grad_loc_stride;
|
400 |
+
}
|
401 |
+
}
|
402 |
+
}
|
403 |
+
}
|
404 |
+
|
405 |
+
|
406 |
+
template <typename scalar_t, unsigned int blockSize>
|
407 |
+
__global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2(const int n,
|
408 |
+
const scalar_t *grad_col,
|
409 |
+
const scalar_t *data_value,
|
410 |
+
const int64_t *data_spatial_shapes,
|
411 |
+
const int64_t *data_level_start_index,
|
412 |
+
const scalar_t *data_sampling_loc,
|
413 |
+
const scalar_t *data_attn_weight,
|
414 |
+
const int batch_size,
|
415 |
+
const int spatial_size,
|
416 |
+
const int num_heads,
|
417 |
+
const int channels,
|
418 |
+
const int num_levels,
|
419 |
+
const int num_query,
|
420 |
+
const int num_point,
|
421 |
+
scalar_t *grad_value,
|
422 |
+
scalar_t *grad_sampling_loc,
|
423 |
+
scalar_t *grad_attn_weight)
|
424 |
+
{
|
425 |
+
CUDA_KERNEL_LOOP(index, n)
|
426 |
+
{
|
427 |
+
__shared__ scalar_t cache_grad_sampling_loc[blockSize * 2];
|
428 |
+
__shared__ scalar_t cache_grad_attn_weight[blockSize];
|
429 |
+
unsigned int tid = threadIdx.x;
|
430 |
+
int _temp = index;
|
431 |
+
const int c_col = _temp % channels;
|
432 |
+
_temp /= channels;
|
433 |
+
const int sampling_index = _temp;
|
434 |
+
const int m_col = _temp % num_heads;
|
435 |
+
_temp /= num_heads;
|
436 |
+
const int q_col = _temp % num_query;
|
437 |
+
_temp /= num_query;
|
438 |
+
const int b_col = _temp;
|
439 |
+
|
440 |
+
const scalar_t top_grad = grad_col[index];
|
441 |
+
|
442 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
443 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
444 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
445 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
446 |
+
grad_attn_weight += grad_sampling_ptr;
|
447 |
+
const int grad_weight_stride = 1;
|
448 |
+
const int grad_loc_stride = 2;
|
449 |
+
const int qid_stride = num_heads * channels;
|
450 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
451 |
+
|
452 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
453 |
+
{
|
454 |
+
const int level_start_id = data_level_start_index[l_col];
|
455 |
+
const int spatial_h_ptr = l_col << 1;
|
456 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
457 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
458 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
459 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
460 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
461 |
+
|
462 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
463 |
+
{
|
464 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
465 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
466 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
467 |
+
|
468 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
469 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
470 |
+
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
|
471 |
+
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
|
472 |
+
*(cache_grad_attn_weight+threadIdx.x)=0;
|
473 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
474 |
+
{
|
475 |
+
ms_deform_attn_col2im_bilinear(
|
476 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
477 |
+
top_grad, weight, grad_value_ptr,
|
478 |
+
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
|
479 |
+
}
|
480 |
+
|
481 |
+
__syncthreads();
|
482 |
+
|
483 |
+
for (unsigned int s=blockSize/2; s>0; s>>=1)
|
484 |
+
{
|
485 |
+
if (tid < s) {
|
486 |
+
const unsigned int xid1 = tid << 1;
|
487 |
+
const unsigned int xid2 = (tid + s) << 1;
|
488 |
+
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
|
489 |
+
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
|
490 |
+
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1];
|
491 |
+
}
|
492 |
+
__syncthreads();
|
493 |
+
}
|
494 |
+
|
495 |
+
if (tid == 0)
|
496 |
+
{
|
497 |
+
*grad_sampling_loc = cache_grad_sampling_loc[0];
|
498 |
+
*(grad_sampling_loc + 1) = cache_grad_sampling_loc[1];
|
499 |
+
*grad_attn_weight = cache_grad_attn_weight[0];
|
500 |
+
}
|
501 |
+
__syncthreads();
|
502 |
+
|
503 |
+
data_weight_ptr += 1;
|
504 |
+
data_loc_w_ptr += 2;
|
505 |
+
grad_attn_weight += grad_weight_stride;
|
506 |
+
grad_sampling_loc += grad_loc_stride;
|
507 |
+
}
|
508 |
+
}
|
509 |
+
}
|
510 |
+
}
|
511 |
+
|
512 |
+
|
513 |
+
template <typename scalar_t>
|
514 |
+
__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v1(const int n,
|
515 |
+
const scalar_t *grad_col,
|
516 |
+
const scalar_t *data_value,
|
517 |
+
const int64_t *data_spatial_shapes,
|
518 |
+
const int64_t *data_level_start_index,
|
519 |
+
const scalar_t *data_sampling_loc,
|
520 |
+
const scalar_t *data_attn_weight,
|
521 |
+
const int batch_size,
|
522 |
+
const int spatial_size,
|
523 |
+
const int num_heads,
|
524 |
+
const int channels,
|
525 |
+
const int num_levels,
|
526 |
+
const int num_query,
|
527 |
+
const int num_point,
|
528 |
+
scalar_t *grad_value,
|
529 |
+
scalar_t *grad_sampling_loc,
|
530 |
+
scalar_t *grad_attn_weight)
|
531 |
+
{
|
532 |
+
CUDA_KERNEL_LOOP(index, n)
|
533 |
+
{
|
534 |
+
extern __shared__ int _s[];
|
535 |
+
scalar_t* cache_grad_sampling_loc = (scalar_t*)_s;
|
536 |
+
scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
|
537 |
+
unsigned int tid = threadIdx.x;
|
538 |
+
int _temp = index;
|
539 |
+
const int c_col = _temp % channels;
|
540 |
+
_temp /= channels;
|
541 |
+
const int sampling_index = _temp;
|
542 |
+
const int m_col = _temp % num_heads;
|
543 |
+
_temp /= num_heads;
|
544 |
+
const int q_col = _temp % num_query;
|
545 |
+
_temp /= num_query;
|
546 |
+
const int b_col = _temp;
|
547 |
+
|
548 |
+
const scalar_t top_grad = grad_col[index];
|
549 |
+
|
550 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
551 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
552 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
553 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
554 |
+
grad_attn_weight += grad_sampling_ptr;
|
555 |
+
const int grad_weight_stride = 1;
|
556 |
+
const int grad_loc_stride = 2;
|
557 |
+
const int qid_stride = num_heads * channels;
|
558 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
559 |
+
|
560 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
561 |
+
{
|
562 |
+
const int level_start_id = data_level_start_index[l_col];
|
563 |
+
const int spatial_h_ptr = l_col << 1;
|
564 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
565 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
566 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
567 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
568 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
569 |
+
|
570 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
571 |
+
{
|
572 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
573 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
574 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
575 |
+
|
576 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
577 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
578 |
+
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
|
579 |
+
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
|
580 |
+
*(cache_grad_attn_weight+threadIdx.x)=0;
|
581 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
582 |
+
{
|
583 |
+
ms_deform_attn_col2im_bilinear(
|
584 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
585 |
+
top_grad, weight, grad_value_ptr,
|
586 |
+
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
|
587 |
+
}
|
588 |
+
|
589 |
+
__syncthreads();
|
590 |
+
if (tid == 0)
|
591 |
+
{
|
592 |
+
scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0];
|
593 |
+
int sid=2;
|
594 |
+
for (unsigned int tid = 1; tid < blockDim.x; ++tid)
|
595 |
+
{
|
596 |
+
_grad_w += cache_grad_sampling_loc[sid];
|
597 |
+
_grad_h += cache_grad_sampling_loc[sid + 1];
|
598 |
+
_grad_a += cache_grad_attn_weight[tid];
|
599 |
+
sid += 2;
|
600 |
+
}
|
601 |
+
|
602 |
+
|
603 |
+
*grad_sampling_loc = _grad_w;
|
604 |
+
*(grad_sampling_loc + 1) = _grad_h;
|
605 |
+
*grad_attn_weight = _grad_a;
|
606 |
+
}
|
607 |
+
__syncthreads();
|
608 |
+
|
609 |
+
data_weight_ptr += 1;
|
610 |
+
data_loc_w_ptr += 2;
|
611 |
+
grad_attn_weight += grad_weight_stride;
|
612 |
+
grad_sampling_loc += grad_loc_stride;
|
613 |
+
}
|
614 |
+
}
|
615 |
+
}
|
616 |
+
}
|
617 |
+
|
618 |
+
template <typename scalar_t>
|
619 |
+
__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2(const int n,
|
620 |
+
const scalar_t *grad_col,
|
621 |
+
const scalar_t *data_value,
|
622 |
+
const int64_t *data_spatial_shapes,
|
623 |
+
const int64_t *data_level_start_index,
|
624 |
+
const scalar_t *data_sampling_loc,
|
625 |
+
const scalar_t *data_attn_weight,
|
626 |
+
const int batch_size,
|
627 |
+
const int spatial_size,
|
628 |
+
const int num_heads,
|
629 |
+
const int channels,
|
630 |
+
const int num_levels,
|
631 |
+
const int num_query,
|
632 |
+
const int num_point,
|
633 |
+
scalar_t *grad_value,
|
634 |
+
scalar_t *grad_sampling_loc,
|
635 |
+
scalar_t *grad_attn_weight)
|
636 |
+
{
|
637 |
+
CUDA_KERNEL_LOOP(index, n)
|
638 |
+
{
|
639 |
+
extern __shared__ int _s[];
|
640 |
+
scalar_t* cache_grad_sampling_loc = (scalar_t*)_s;
|
641 |
+
scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
|
642 |
+
unsigned int tid = threadIdx.x;
|
643 |
+
int _temp = index;
|
644 |
+
const int c_col = _temp % channels;
|
645 |
+
_temp /= channels;
|
646 |
+
const int sampling_index = _temp;
|
647 |
+
const int m_col = _temp % num_heads;
|
648 |
+
_temp /= num_heads;
|
649 |
+
const int q_col = _temp % num_query;
|
650 |
+
_temp /= num_query;
|
651 |
+
const int b_col = _temp;
|
652 |
+
|
653 |
+
const scalar_t top_grad = grad_col[index];
|
654 |
+
|
655 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
656 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
657 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
658 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
659 |
+
grad_attn_weight += grad_sampling_ptr;
|
660 |
+
const int grad_weight_stride = 1;
|
661 |
+
const int grad_loc_stride = 2;
|
662 |
+
const int qid_stride = num_heads * channels;
|
663 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
664 |
+
|
665 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
666 |
+
{
|
667 |
+
const int level_start_id = data_level_start_index[l_col];
|
668 |
+
const int spatial_h_ptr = l_col << 1;
|
669 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
670 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
671 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
672 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
673 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
674 |
+
|
675 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
676 |
+
{
|
677 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
678 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
679 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
680 |
+
|
681 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
682 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
683 |
+
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
|
684 |
+
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
|
685 |
+
*(cache_grad_attn_weight+threadIdx.x)=0;
|
686 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
687 |
+
{
|
688 |
+
ms_deform_attn_col2im_bilinear(
|
689 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
690 |
+
top_grad, weight, grad_value_ptr,
|
691 |
+
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
|
692 |
+
}
|
693 |
+
|
694 |
+
__syncthreads();
|
695 |
+
|
696 |
+
for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1)
|
697 |
+
{
|
698 |
+
if (tid < s) {
|
699 |
+
const unsigned int xid1 = tid << 1;
|
700 |
+
const unsigned int xid2 = (tid + s) << 1;
|
701 |
+
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
|
702 |
+
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
|
703 |
+
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1];
|
704 |
+
if (tid + (s << 1) < spre)
|
705 |
+
{
|
706 |
+
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)];
|
707 |
+
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)];
|
708 |
+
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)];
|
709 |
+
}
|
710 |
+
}
|
711 |
+
__syncthreads();
|
712 |
+
}
|
713 |
+
|
714 |
+
if (tid == 0)
|
715 |
+
{
|
716 |
+
*grad_sampling_loc = cache_grad_sampling_loc[0];
|
717 |
+
*(grad_sampling_loc + 1) = cache_grad_sampling_loc[1];
|
718 |
+
*grad_attn_weight = cache_grad_attn_weight[0];
|
719 |
+
}
|
720 |
+
__syncthreads();
|
721 |
+
|
722 |
+
data_weight_ptr += 1;
|
723 |
+
data_loc_w_ptr += 2;
|
724 |
+
grad_attn_weight += grad_weight_stride;
|
725 |
+
grad_sampling_loc += grad_loc_stride;
|
726 |
+
}
|
727 |
+
}
|
728 |
+
}
|
729 |
+
}
|
730 |
+
|
731 |
+
template <typename scalar_t>
|
732 |
+
__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks(const int n,
|
733 |
+
const scalar_t *grad_col,
|
734 |
+
const scalar_t *data_value,
|
735 |
+
const int64_t *data_spatial_shapes,
|
736 |
+
const int64_t *data_level_start_index,
|
737 |
+
const scalar_t *data_sampling_loc,
|
738 |
+
const scalar_t *data_attn_weight,
|
739 |
+
const int batch_size,
|
740 |
+
const int spatial_size,
|
741 |
+
const int num_heads,
|
742 |
+
const int channels,
|
743 |
+
const int num_levels,
|
744 |
+
const int num_query,
|
745 |
+
const int num_point,
|
746 |
+
scalar_t *grad_value,
|
747 |
+
scalar_t *grad_sampling_loc,
|
748 |
+
scalar_t *grad_attn_weight)
|
749 |
+
{
|
750 |
+
CUDA_KERNEL_LOOP(index, n)
|
751 |
+
{
|
752 |
+
extern __shared__ int _s[];
|
753 |
+
scalar_t* cache_grad_sampling_loc = (scalar_t*)_s;
|
754 |
+
scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
|
755 |
+
unsigned int tid = threadIdx.x;
|
756 |
+
int _temp = index;
|
757 |
+
const int c_col = _temp % channels;
|
758 |
+
_temp /= channels;
|
759 |
+
const int sampling_index = _temp;
|
760 |
+
const int m_col = _temp % num_heads;
|
761 |
+
_temp /= num_heads;
|
762 |
+
const int q_col = _temp % num_query;
|
763 |
+
_temp /= num_query;
|
764 |
+
const int b_col = _temp;
|
765 |
+
|
766 |
+
const scalar_t top_grad = grad_col[index];
|
767 |
+
|
768 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
769 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
770 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
771 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
772 |
+
grad_attn_weight += grad_sampling_ptr;
|
773 |
+
const int grad_weight_stride = 1;
|
774 |
+
const int grad_loc_stride = 2;
|
775 |
+
const int qid_stride = num_heads * channels;
|
776 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
777 |
+
|
778 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
779 |
+
{
|
780 |
+
const int level_start_id = data_level_start_index[l_col];
|
781 |
+
const int spatial_h_ptr = l_col << 1;
|
782 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
783 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
784 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
785 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
786 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
787 |
+
|
788 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
789 |
+
{
|
790 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
791 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
792 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
793 |
+
|
794 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
795 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
796 |
+
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
|
797 |
+
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
|
798 |
+
*(cache_grad_attn_weight+threadIdx.x)=0;
|
799 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
800 |
+
{
|
801 |
+
ms_deform_attn_col2im_bilinear(
|
802 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
803 |
+
top_grad, weight, grad_value_ptr,
|
804 |
+
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
|
805 |
+
}
|
806 |
+
|
807 |
+
__syncthreads();
|
808 |
+
|
809 |
+
for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1)
|
810 |
+
{
|
811 |
+
if (tid < s) {
|
812 |
+
const unsigned int xid1 = tid << 1;
|
813 |
+
const unsigned int xid2 = (tid + s) << 1;
|
814 |
+
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
|
815 |
+
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
|
816 |
+
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1];
|
817 |
+
if (tid + (s << 1) < spre)
|
818 |
+
{
|
819 |
+
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)];
|
820 |
+
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)];
|
821 |
+
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)];
|
822 |
+
}
|
823 |
+
}
|
824 |
+
__syncthreads();
|
825 |
+
}
|
826 |
+
|
827 |
+
if (tid == 0)
|
828 |
+
{
|
829 |
+
atomicAdd(grad_sampling_loc, cache_grad_sampling_loc[0]);
|
830 |
+
atomicAdd(grad_sampling_loc + 1, cache_grad_sampling_loc[1]);
|
831 |
+
atomicAdd(grad_attn_weight, cache_grad_attn_weight[0]);
|
832 |
+
}
|
833 |
+
__syncthreads();
|
834 |
+
|
835 |
+
data_weight_ptr += 1;
|
836 |
+
data_loc_w_ptr += 2;
|
837 |
+
grad_attn_weight += grad_weight_stride;
|
838 |
+
grad_sampling_loc += grad_loc_stride;
|
839 |
+
}
|
840 |
+
}
|
841 |
+
}
|
842 |
+
}
|
843 |
+
|
844 |
+
|
845 |
+
template <typename scalar_t>
|
846 |
+
__global__ void ms_deformable_col2im_gpu_kernel_gm(const int n,
|
847 |
+
const scalar_t *grad_col,
|
848 |
+
const scalar_t *data_value,
|
849 |
+
const int64_t *data_spatial_shapes,
|
850 |
+
const int64_t *data_level_start_index,
|
851 |
+
const scalar_t *data_sampling_loc,
|
852 |
+
const scalar_t *data_attn_weight,
|
853 |
+
const int batch_size,
|
854 |
+
const int spatial_size,
|
855 |
+
const int num_heads,
|
856 |
+
const int channels,
|
857 |
+
const int num_levels,
|
858 |
+
const int num_query,
|
859 |
+
const int num_point,
|
860 |
+
scalar_t *grad_value,
|
861 |
+
scalar_t *grad_sampling_loc,
|
862 |
+
scalar_t *grad_attn_weight)
|
863 |
+
{
|
864 |
+
CUDA_KERNEL_LOOP(index, n)
|
865 |
+
{
|
866 |
+
int _temp = index;
|
867 |
+
const int c_col = _temp % channels;
|
868 |
+
_temp /= channels;
|
869 |
+
const int sampling_index = _temp;
|
870 |
+
const int m_col = _temp % num_heads;
|
871 |
+
_temp /= num_heads;
|
872 |
+
const int q_col = _temp % num_query;
|
873 |
+
_temp /= num_query;
|
874 |
+
const int b_col = _temp;
|
875 |
+
|
876 |
+
const scalar_t top_grad = grad_col[index];
|
877 |
+
|
878 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
879 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
880 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
881 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
882 |
+
grad_attn_weight += grad_sampling_ptr;
|
883 |
+
const int grad_weight_stride = 1;
|
884 |
+
const int grad_loc_stride = 2;
|
885 |
+
const int qid_stride = num_heads * channels;
|
886 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
887 |
+
|
888 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
889 |
+
{
|
890 |
+
const int level_start_id = data_level_start_index[l_col];
|
891 |
+
const int spatial_h_ptr = l_col << 1;
|
892 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
893 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
894 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
895 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
896 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
897 |
+
|
898 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
899 |
+
{
|
900 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
901 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
902 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
903 |
+
|
904 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
905 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
906 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
907 |
+
{
|
908 |
+
ms_deform_attn_col2im_bilinear_gm(
|
909 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
910 |
+
top_grad, weight, grad_value_ptr,
|
911 |
+
grad_sampling_loc, grad_attn_weight);
|
912 |
+
}
|
913 |
+
data_weight_ptr += 1;
|
914 |
+
data_loc_w_ptr += 2;
|
915 |
+
grad_attn_weight += grad_weight_stride;
|
916 |
+
grad_sampling_loc += grad_loc_stride;
|
917 |
+
}
|
918 |
+
}
|
919 |
+
}
|
920 |
+
}
|
921 |
+
|
922 |
+
|
923 |
+
template <typename scalar_t>
|
924 |
+
void ms_deformable_im2col_cuda(cudaStream_t stream,
|
925 |
+
const scalar_t* data_value,
|
926 |
+
const int64_t* data_spatial_shapes,
|
927 |
+
const int64_t* data_level_start_index,
|
928 |
+
const scalar_t* data_sampling_loc,
|
929 |
+
const scalar_t* data_attn_weight,
|
930 |
+
const int batch_size,
|
931 |
+
const int spatial_size,
|
932 |
+
const int num_heads,
|
933 |
+
const int channels,
|
934 |
+
const int num_levels,
|
935 |
+
const int num_query,
|
936 |
+
const int num_point,
|
937 |
+
scalar_t* data_col)
|
938 |
+
{
|
939 |
+
const int num_kernels = batch_size * num_query * num_heads * channels;
|
940 |
+
const int num_actual_kernels = batch_size * num_query * num_heads * channels;
|
941 |
+
const int num_threads = CUDA_NUM_THREADS;
|
942 |
+
ms_deformable_im2col_gpu_kernel<scalar_t>
|
943 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
944 |
+
0, stream>>>(
|
945 |
+
num_kernels, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight,
|
946 |
+
batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, data_col);
|
947 |
+
|
948 |
+
cudaError_t err = cudaGetLastError();
|
949 |
+
if (err != cudaSuccess)
|
950 |
+
{
|
951 |
+
printf("error in ms_deformable_im2col_cuda: %s\n", cudaGetErrorString(err));
|
952 |
+
}
|
953 |
+
|
954 |
+
}
|
955 |
+
|
956 |
+
template <typename scalar_t>
|
957 |
+
void ms_deformable_col2im_cuda(cudaStream_t stream,
|
958 |
+
const scalar_t* grad_col,
|
959 |
+
const scalar_t* data_value,
|
960 |
+
const int64_t * data_spatial_shapes,
|
961 |
+
const int64_t * data_level_start_index,
|
962 |
+
const scalar_t * data_sampling_loc,
|
963 |
+
const scalar_t * data_attn_weight,
|
964 |
+
const int batch_size,
|
965 |
+
const int spatial_size,
|
966 |
+
const int num_heads,
|
967 |
+
const int channels,
|
968 |
+
const int num_levels,
|
969 |
+
const int num_query,
|
970 |
+
const int num_point,
|
971 |
+
scalar_t* grad_value,
|
972 |
+
scalar_t* grad_sampling_loc,
|
973 |
+
scalar_t* grad_attn_weight)
|
974 |
+
{
|
975 |
+
const int num_threads = (channels > CUDA_NUM_THREADS)?CUDA_NUM_THREADS:channels;
|
976 |
+
const int num_kernels = batch_size * num_query * num_heads * channels;
|
977 |
+
const int num_actual_kernels = batch_size * num_query * num_heads * channels;
|
978 |
+
if (channels > 1024)
|
979 |
+
{
|
980 |
+
if ((channels & 1023) == 0)
|
981 |
+
{
|
982 |
+
ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks<scalar_t>
|
983 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
984 |
+
num_threads*3*sizeof(scalar_t), stream>>>(
|
985 |
+
num_kernels,
|
986 |
+
grad_col,
|
987 |
+
data_value,
|
988 |
+
data_spatial_shapes,
|
989 |
+
data_level_start_index,
|
990 |
+
data_sampling_loc,
|
991 |
+
data_attn_weight,
|
992 |
+
batch_size,
|
993 |
+
spatial_size,
|
994 |
+
num_heads,
|
995 |
+
channels,
|
996 |
+
num_levels,
|
997 |
+
num_query,
|
998 |
+
num_point,
|
999 |
+
grad_value,
|
1000 |
+
grad_sampling_loc,
|
1001 |
+
grad_attn_weight);
|
1002 |
+
}
|
1003 |
+
else
|
1004 |
+
{
|
1005 |
+
ms_deformable_col2im_gpu_kernel_gm<scalar_t>
|
1006 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1007 |
+
0, stream>>>(
|
1008 |
+
num_kernels,
|
1009 |
+
grad_col,
|
1010 |
+
data_value,
|
1011 |
+
data_spatial_shapes,
|
1012 |
+
data_level_start_index,
|
1013 |
+
data_sampling_loc,
|
1014 |
+
data_attn_weight,
|
1015 |
+
batch_size,
|
1016 |
+
spatial_size,
|
1017 |
+
num_heads,
|
1018 |
+
channels,
|
1019 |
+
num_levels,
|
1020 |
+
num_query,
|
1021 |
+
num_point,
|
1022 |
+
grad_value,
|
1023 |
+
grad_sampling_loc,
|
1024 |
+
grad_attn_weight);
|
1025 |
+
}
|
1026 |
+
}
|
1027 |
+
else{
|
1028 |
+
switch(channels)
|
1029 |
+
{
|
1030 |
+
case 1:
|
1031 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 1>
|
1032 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1033 |
+
0, stream>>>(
|
1034 |
+
num_kernels,
|
1035 |
+
grad_col,
|
1036 |
+
data_value,
|
1037 |
+
data_spatial_shapes,
|
1038 |
+
data_level_start_index,
|
1039 |
+
data_sampling_loc,
|
1040 |
+
data_attn_weight,
|
1041 |
+
batch_size,
|
1042 |
+
spatial_size,
|
1043 |
+
num_heads,
|
1044 |
+
channels,
|
1045 |
+
num_levels,
|
1046 |
+
num_query,
|
1047 |
+
num_point,
|
1048 |
+
grad_value,
|
1049 |
+
grad_sampling_loc,
|
1050 |
+
grad_attn_weight);
|
1051 |
+
break;
|
1052 |
+
case 2:
|
1053 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 2>
|
1054 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1055 |
+
0, stream>>>(
|
1056 |
+
num_kernels,
|
1057 |
+
grad_col,
|
1058 |
+
data_value,
|
1059 |
+
data_spatial_shapes,
|
1060 |
+
data_level_start_index,
|
1061 |
+
data_sampling_loc,
|
1062 |
+
data_attn_weight,
|
1063 |
+
batch_size,
|
1064 |
+
spatial_size,
|
1065 |
+
num_heads,
|
1066 |
+
channels,
|
1067 |
+
num_levels,
|
1068 |
+
num_query,
|
1069 |
+
num_point,
|
1070 |
+
grad_value,
|
1071 |
+
grad_sampling_loc,
|
1072 |
+
grad_attn_weight);
|
1073 |
+
break;
|
1074 |
+
case 4:
|
1075 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 4>
|
1076 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1077 |
+
0, stream>>>(
|
1078 |
+
num_kernels,
|
1079 |
+
grad_col,
|
1080 |
+
data_value,
|
1081 |
+
data_spatial_shapes,
|
1082 |
+
data_level_start_index,
|
1083 |
+
data_sampling_loc,
|
1084 |
+
data_attn_weight,
|
1085 |
+
batch_size,
|
1086 |
+
spatial_size,
|
1087 |
+
num_heads,
|
1088 |
+
channels,
|
1089 |
+
num_levels,
|
1090 |
+
num_query,
|
1091 |
+
num_point,
|
1092 |
+
grad_value,
|
1093 |
+
grad_sampling_loc,
|
1094 |
+
grad_attn_weight);
|
1095 |
+
break;
|
1096 |
+
case 8:
|
1097 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 8>
|
1098 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1099 |
+
0, stream>>>(
|
1100 |
+
num_kernels,
|
1101 |
+
grad_col,
|
1102 |
+
data_value,
|
1103 |
+
data_spatial_shapes,
|
1104 |
+
data_level_start_index,
|
1105 |
+
data_sampling_loc,
|
1106 |
+
data_attn_weight,
|
1107 |
+
batch_size,
|
1108 |
+
spatial_size,
|
1109 |
+
num_heads,
|
1110 |
+
channels,
|
1111 |
+
num_levels,
|
1112 |
+
num_query,
|
1113 |
+
num_point,
|
1114 |
+
grad_value,
|
1115 |
+
grad_sampling_loc,
|
1116 |
+
grad_attn_weight);
|
1117 |
+
break;
|
1118 |
+
case 16:
|
1119 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 16>
|
1120 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1121 |
+
0, stream>>>(
|
1122 |
+
num_kernels,
|
1123 |
+
grad_col,
|
1124 |
+
data_value,
|
1125 |
+
data_spatial_shapes,
|
1126 |
+
data_level_start_index,
|
1127 |
+
data_sampling_loc,
|
1128 |
+
data_attn_weight,
|
1129 |
+
batch_size,
|
1130 |
+
spatial_size,
|
1131 |
+
num_heads,
|
1132 |
+
channels,
|
1133 |
+
num_levels,
|
1134 |
+
num_query,
|
1135 |
+
num_point,
|
1136 |
+
grad_value,
|
1137 |
+
grad_sampling_loc,
|
1138 |
+
grad_attn_weight);
|
1139 |
+
break;
|
1140 |
+
case 32:
|
1141 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 32>
|
1142 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1143 |
+
0, stream>>>(
|
1144 |
+
num_kernels,
|
1145 |
+
grad_col,
|
1146 |
+
data_value,
|
1147 |
+
data_spatial_shapes,
|
1148 |
+
data_level_start_index,
|
1149 |
+
data_sampling_loc,
|
1150 |
+
data_attn_weight,
|
1151 |
+
batch_size,
|
1152 |
+
spatial_size,
|
1153 |
+
num_heads,
|
1154 |
+
channels,
|
1155 |
+
num_levels,
|
1156 |
+
num_query,
|
1157 |
+
num_point,
|
1158 |
+
grad_value,
|
1159 |
+
grad_sampling_loc,
|
1160 |
+
grad_attn_weight);
|
1161 |
+
break;
|
1162 |
+
case 64:
|
1163 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 64>
|
1164 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1165 |
+
0, stream>>>(
|
1166 |
+
num_kernels,
|
1167 |
+
grad_col,
|
1168 |
+
data_value,
|
1169 |
+
data_spatial_shapes,
|
1170 |
+
data_level_start_index,
|
1171 |
+
data_sampling_loc,
|
1172 |
+
data_attn_weight,
|
1173 |
+
batch_size,
|
1174 |
+
spatial_size,
|
1175 |
+
num_heads,
|
1176 |
+
channels,
|
1177 |
+
num_levels,
|
1178 |
+
num_query,
|
1179 |
+
num_point,
|
1180 |
+
grad_value,
|
1181 |
+
grad_sampling_loc,
|
1182 |
+
grad_attn_weight);
|
1183 |
+
break;
|
1184 |
+
case 128:
|
1185 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 128>
|
1186 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1187 |
+
0, stream>>>(
|
1188 |
+
num_kernels,
|
1189 |
+
grad_col,
|
1190 |
+
data_value,
|
1191 |
+
data_spatial_shapes,
|
1192 |
+
data_level_start_index,
|
1193 |
+
data_sampling_loc,
|
1194 |
+
data_attn_weight,
|
1195 |
+
batch_size,
|
1196 |
+
spatial_size,
|
1197 |
+
num_heads,
|
1198 |
+
channels,
|
1199 |
+
num_levels,
|
1200 |
+
num_query,
|
1201 |
+
num_point,
|
1202 |
+
grad_value,
|
1203 |
+
grad_sampling_loc,
|
1204 |
+
grad_attn_weight);
|
1205 |
+
break;
|
1206 |
+
case 256:
|
1207 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 256>
|
1208 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1209 |
+
0, stream>>>(
|
1210 |
+
num_kernels,
|
1211 |
+
grad_col,
|
1212 |
+
data_value,
|
1213 |
+
data_spatial_shapes,
|
1214 |
+
data_level_start_index,
|
1215 |
+
data_sampling_loc,
|
1216 |
+
data_attn_weight,
|
1217 |
+
batch_size,
|
1218 |
+
spatial_size,
|
1219 |
+
num_heads,
|
1220 |
+
channels,
|
1221 |
+
num_levels,
|
1222 |
+
num_query,
|
1223 |
+
num_point,
|
1224 |
+
grad_value,
|
1225 |
+
grad_sampling_loc,
|
1226 |
+
grad_attn_weight);
|
1227 |
+
break;
|
1228 |
+
case 512:
|
1229 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 512>
|
1230 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1231 |
+
0, stream>>>(
|
1232 |
+
num_kernels,
|
1233 |
+
grad_col,
|
1234 |
+
data_value,
|
1235 |
+
data_spatial_shapes,
|
1236 |
+
data_level_start_index,
|
1237 |
+
data_sampling_loc,
|
1238 |
+
data_attn_weight,
|
1239 |
+
batch_size,
|
1240 |
+
spatial_size,
|
1241 |
+
num_heads,
|
1242 |
+
channels,
|
1243 |
+
num_levels,
|
1244 |
+
num_query,
|
1245 |
+
num_point,
|
1246 |
+
grad_value,
|
1247 |
+
grad_sampling_loc,
|
1248 |
+
grad_attn_weight);
|
1249 |
+
break;
|
1250 |
+
case 1024:
|
1251 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 1024>
|
1252 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1253 |
+
0, stream>>>(
|
1254 |
+
num_kernels,
|
1255 |
+
grad_col,
|
1256 |
+
data_value,
|
1257 |
+
data_spatial_shapes,
|
1258 |
+
data_level_start_index,
|
1259 |
+
data_sampling_loc,
|
1260 |
+
data_attn_weight,
|
1261 |
+
batch_size,
|
1262 |
+
spatial_size,
|
1263 |
+
num_heads,
|
1264 |
+
channels,
|
1265 |
+
num_levels,
|
1266 |
+
num_query,
|
1267 |
+
num_point,
|
1268 |
+
grad_value,
|
1269 |
+
grad_sampling_loc,
|
1270 |
+
grad_attn_weight);
|
1271 |
+
break;
|
1272 |
+
default:
|
1273 |
+
if (channels < 64)
|
1274 |
+
{
|
1275 |
+
ms_deformable_col2im_gpu_kernel_shm_reduce_v1<scalar_t>
|
1276 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1277 |
+
num_threads*3*sizeof(scalar_t), stream>>>(
|
1278 |
+
num_kernels,
|
1279 |
+
grad_col,
|
1280 |
+
data_value,
|
1281 |
+
data_spatial_shapes,
|
1282 |
+
data_level_start_index,
|
1283 |
+
data_sampling_loc,
|
1284 |
+
data_attn_weight,
|
1285 |
+
batch_size,
|
1286 |
+
spatial_size,
|
1287 |
+
num_heads,
|
1288 |
+
channels,
|
1289 |
+
num_levels,
|
1290 |
+
num_query,
|
1291 |
+
num_point,
|
1292 |
+
grad_value,
|
1293 |
+
grad_sampling_loc,
|
1294 |
+
grad_attn_weight);
|
1295 |
+
}
|
1296 |
+
else
|
1297 |
+
{
|
1298 |
+
ms_deformable_col2im_gpu_kernel_shm_reduce_v2<scalar_t>
|
1299 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1300 |
+
num_threads*3*sizeof(scalar_t), stream>>>(
|
1301 |
+
num_kernels,
|
1302 |
+
grad_col,
|
1303 |
+
data_value,
|
1304 |
+
data_spatial_shapes,
|
1305 |
+
data_level_start_index,
|
1306 |
+
data_sampling_loc,
|
1307 |
+
data_attn_weight,
|
1308 |
+
batch_size,
|
1309 |
+
spatial_size,
|
1310 |
+
num_heads,
|
1311 |
+
channels,
|
1312 |
+
num_levels,
|
1313 |
+
num_query,
|
1314 |
+
num_point,
|
1315 |
+
grad_value,
|
1316 |
+
grad_sampling_loc,
|
1317 |
+
grad_attn_weight);
|
1318 |
+
}
|
1319 |
+
}
|
1320 |
+
}
|
1321 |
+
cudaError_t err = cudaGetLastError();
|
1322 |
+
if (err != cudaSuccess)
|
1323 |
+
{
|
1324 |
+
printf("error in ms_deformable_col2im_cuda: %s\n", cudaGetErrorString(err));
|
1325 |
+
}
|
1326 |
+
|
1327 |
+
}
|
csrc/cuda_version.cu
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <cuda_runtime_api.h>
|
2 |
+
|
3 |
+
namespace groundingdino {
|
4 |
+
int get_cudart_version() {
|
5 |
+
return CUDART_VERSION;
|
6 |
+
}
|
7 |
+
} // namespace groundingdino
|
csrc/vision.cpp
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
2 |
+
|
3 |
+
#include "MsDeformAttn/ms_deform_attn.h"
|
4 |
+
|
5 |
+
namespace groundingdino {
|
6 |
+
|
7 |
+
#ifdef WITH_CUDA
|
8 |
+
extern int get_cudart_version();
|
9 |
+
#endif
|
10 |
+
|
11 |
+
std::string get_cuda_version() {
|
12 |
+
#ifdef WITH_CUDA
|
13 |
+
std::ostringstream oss;
|
14 |
+
|
15 |
+
// copied from
|
16 |
+
// https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/cuda/detail/CUDAHooks.cpp#L231
|
17 |
+
auto printCudaStyleVersion = [&](int v) {
|
18 |
+
oss << (v / 1000) << "." << (v / 10 % 100);
|
19 |
+
if (v % 10 != 0) {
|
20 |
+
oss << "." << (v % 10);
|
21 |
+
}
|
22 |
+
};
|
23 |
+
printCudaStyleVersion(get_cudart_version());
|
24 |
+
return oss.str();
|
25 |
+
#else
|
26 |
+
return std::string("not available");
|
27 |
+
#endif
|
28 |
+
}
|
29 |
+
|
30 |
+
// similar to
|
31 |
+
// https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/Version.cpp
|
32 |
+
std::string get_compiler_version() {
|
33 |
+
std::ostringstream ss;
|
34 |
+
#if defined(__GNUC__)
|
35 |
+
#ifndef __clang__
|
36 |
+
{ ss << "GCC " << __GNUC__ << "." << __GNUC_MINOR__; }
|
37 |
+
#endif
|
38 |
+
#endif
|
39 |
+
|
40 |
+
#if defined(__clang_major__)
|
41 |
+
{
|
42 |
+
ss << "clang " << __clang_major__ << "." << __clang_minor__ << "."
|
43 |
+
<< __clang_patchlevel__;
|
44 |
+
}
|
45 |
+
#endif
|
46 |
+
|
47 |
+
#if defined(_MSC_VER)
|
48 |
+
{ ss << "MSVC " << _MSC_FULL_VER; }
|
49 |
+
#endif
|
50 |
+
return ss.str();
|
51 |
+
}
|
52 |
+
|
53 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
54 |
+
m.def("ms_deform_attn_forward", &ms_deform_attn_forward, "ms_deform_attn_forward");
|
55 |
+
m.def("ms_deform_attn_backward", &ms_deform_attn_backward, "ms_deform_attn_backward");
|
56 |
+
}
|
57 |
+
|
58 |
+
} // namespace groundingdino
|
main_1.jpg
ADDED
![]() |
main_2.jpg
ADDED
![]() |
main_3.jpg
ADDED
![]() |
main_4.jpg
ADDED
![]() |
main_5.jpg
ADDED
![]() |
main_6.jpeg
ADDED
![]() |
models/__init__.py
ADDED
File without changes
|
models/blip2_decoder.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import logging
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from lavis.common.registry import registry
|
7 |
+
from lavis.models import Blip2OPT, load_preprocess
|
8 |
+
from omegaconf import OmegaConf
|
9 |
+
|
10 |
+
|
11 |
+
@registry.register_model("blip2_opt_det")
|
12 |
+
class Blip2OPTDet(Blip2OPT):
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
**kwargs
|
16 |
+
):
|
17 |
+
super().__init__(**kwargs)
|
18 |
+
self.opt_tokenizer.add_special_tokens({"mask_token": "<mask>"})
|
19 |
+
|
20 |
+
def maybe_autocast(self, dtype=torch.float16):
|
21 |
+
# if on cpu, don't use autocast
|
22 |
+
# if on gpu, use autocast with dtype if provided, otherwise use torch.float16
|
23 |
+
enable_autocast = self.device != torch.device("cpu")
|
24 |
+
|
25 |
+
if enable_autocast:
|
26 |
+
return torch.cuda.amp.autocast(dtype=dtype)
|
27 |
+
else:
|
28 |
+
return contextlib.nullcontext()
|
29 |
+
|
30 |
+
@torch.no_grad()
|
31 |
+
def forward(self, samples,
|
32 |
+
use_nucleus_sampling=False,
|
33 |
+
num_beams=5,
|
34 |
+
max_length=30,
|
35 |
+
min_length=1,
|
36 |
+
top_p=0.9,
|
37 |
+
repetition_penalty=1.0,
|
38 |
+
length_penalty=1.0,
|
39 |
+
num_captions=1,
|
40 |
+
temperature=1,
|
41 |
+
task_button=None):
|
42 |
+
image = samples["image"]
|
43 |
+
with self.maybe_autocast():
|
44 |
+
image_embeds = self.ln_vision(self.visual_encoder(image))
|
45 |
+
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
|
46 |
+
image.device
|
47 |
+
)
|
48 |
+
|
49 |
+
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
50 |
+
query_output = self.Qformer.bert(
|
51 |
+
query_embeds=query_tokens,
|
52 |
+
encoder_hidden_states=image_embeds,
|
53 |
+
encoder_attention_mask=image_atts,
|
54 |
+
return_dict=True,
|
55 |
+
)
|
56 |
+
|
57 |
+
inputs_opt = self.opt_proj(query_output.last_hidden_state)
|
58 |
+
atts_opt = torch.ones(inputs_opt.size()[:-1], dtype=torch.long).to(image.device)
|
59 |
+
|
60 |
+
self.opt_tokenizer.padding_side = "right"
|
61 |
+
|
62 |
+
if "text_input" in samples.keys():
|
63 |
+
# text = [t + "\n" for t in samples["text_input"]]
|
64 |
+
text = [t for t in samples["text_input"]]
|
65 |
+
opt_tokens = self.opt_tokenizer(
|
66 |
+
text,
|
67 |
+
return_tensors="pt",
|
68 |
+
padding="longest",
|
69 |
+
).to(image.device)
|
70 |
+
input_ids = opt_tokens.input_ids
|
71 |
+
attention_mask = opt_tokens.attention_mask
|
72 |
+
output_text = text
|
73 |
+
elif "input_ids" in samples.keys():
|
74 |
+
input_ids = samples["input_ids"]
|
75 |
+
attention_mask = samples["attention_mask"]
|
76 |
+
output_text = []
|
77 |
+
else:
|
78 |
+
assert "prompt" in samples.keys()
|
79 |
+
prompt = samples["prompt"]
|
80 |
+
assert len(prompt) == image.size(0)
|
81 |
+
|
82 |
+
opt_tokens = self.opt_tokenizer(prompt, return_tensors="pt", padding=True).to(
|
83 |
+
image.device
|
84 |
+
)
|
85 |
+
input_ids = opt_tokens.input_ids
|
86 |
+
attention_mask = torch.cat([atts_opt, opt_tokens.attention_mask], dim=1)
|
87 |
+
|
88 |
+
if use_nucleus_sampling:
|
89 |
+
query_embeds = inputs_opt.repeat_interleave(num_captions, dim=0)
|
90 |
+
num_beams = 1
|
91 |
+
else:
|
92 |
+
query_embeds = inputs_opt.repeat_interleave(num_beams, dim=0)
|
93 |
+
|
94 |
+
with self.maybe_autocast():
|
95 |
+
outputs = self.opt_model.generate(
|
96 |
+
input_ids=input_ids,
|
97 |
+
query_embeds=query_embeds,
|
98 |
+
attention_mask=attention_mask,
|
99 |
+
do_sample=use_nucleus_sampling,
|
100 |
+
top_p=top_p,
|
101 |
+
temperature=temperature,
|
102 |
+
num_beams=num_beams,
|
103 |
+
max_new_tokens=max_length,
|
104 |
+
min_length=min_length,
|
105 |
+
eos_token_id=self.eos_token_id,
|
106 |
+
repetition_penalty=repetition_penalty,
|
107 |
+
length_penalty=length_penalty,
|
108 |
+
num_return_sequences=num_captions,
|
109 |
+
)
|
110 |
+
|
111 |
+
prompt_length = opt_tokens.input_ids.shape[1]
|
112 |
+
output_text = self.opt_tokenizer.batch_decode(
|
113 |
+
outputs[:, prompt_length:], skip_special_tokens=True
|
114 |
+
)
|
115 |
+
output_text = [text.strip() for text in output_text]
|
116 |
+
if task_button == 'Question Answering' or task_button == "Captioning":
|
117 |
+
output_text_input = [prompt[0] + ' ' + output_text[0]]
|
118 |
+
opt_tokens = self.opt_tokenizer(
|
119 |
+
output_text_input,
|
120 |
+
return_tensors="pt",
|
121 |
+
padding="longest",
|
122 |
+
).to(image.device)
|
123 |
+
input_ids = opt_tokens.input_ids
|
124 |
+
attention_mask = opt_tokens.attention_mask
|
125 |
+
|
126 |
+
inputs_embeds = self.opt_model.model.decoder.embed_tokens(input_ids)
|
127 |
+
inputs_embeds = torch.cat([inputs_opt, inputs_embeds], dim=1)
|
128 |
+
attention_mask = torch.cat([atts_opt, attention_mask], dim=1)
|
129 |
+
with self.maybe_autocast():
|
130 |
+
outputs = self.opt_model(
|
131 |
+
inputs_embeds=inputs_embeds,
|
132 |
+
attention_mask=attention_mask,
|
133 |
+
return_dict=True,
|
134 |
+
output_hidden_states=True
|
135 |
+
)
|
136 |
+
n_queries = query_tokens.shape[1]
|
137 |
+
out_logits = outputs['logits'][:, n_queries:]
|
138 |
+
out_hidden = outputs['hidden_states'][-1][:, n_queries:]
|
139 |
+
return out_logits, out_hidden, input_ids, output_text
|
140 |
+
|
141 |
+
|
142 |
+
def load_model_and_preprocess(name, model_type, is_eval=False, device="cpu"):
|
143 |
+
model_cls = registry.get_model_class(name)
|
144 |
+
|
145 |
+
# load model
|
146 |
+
model = model_cls.from_pretrained(model_type=model_type)
|
147 |
+
|
148 |
+
if is_eval:
|
149 |
+
model.eval()
|
150 |
+
|
151 |
+
# load preprocess
|
152 |
+
cfg = OmegaConf.load(model_cls.default_config_path(model_type))
|
153 |
+
if cfg is not None:
|
154 |
+
preprocess_cfg = cfg.preprocess
|
155 |
+
|
156 |
+
vis_processors, txt_processors = load_preprocess(preprocess_cfg)
|
157 |
+
else:
|
158 |
+
vis_processors, txt_processors = None, None
|
159 |
+
logging.info(
|
160 |
+
f"""No default preprocess for model {name} ({model_type}).
|
161 |
+
This can happen if the model is not finetuned on downstream datasets,
|
162 |
+
or it is not intended for direct use without finetuning.
|
163 |
+
"""
|
164 |
+
)
|
165 |
+
|
166 |
+
if device == "cpu" or device == torch.device("cpu"):
|
167 |
+
model = model.float()
|
168 |
+
|
169 |
+
return model.to(device), vis_processors, txt_processors
|
170 |
+
|
171 |
+
|
172 |
+
class BLIP2Decoder(nn.Module):
|
173 |
+
def __init__(self, llm_name):
|
174 |
+
super(BLIP2Decoder, self).__init__()
|
175 |
+
|
176 |
+
self.device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
|
177 |
+
if llm_name not in ['pretrain_opt2.7b', 'caption_coco_opt2.7b',
|
178 |
+
'pretrain_opt6.7b', 'caption_coco_opt6.7b']:
|
179 |
+
raise ValueError(f"{llm_name} is not support yet")
|
180 |
+
model_type = llm_name
|
181 |
+
model, vis, _ = load_model_and_preprocess(name="blip2_opt_det",
|
182 |
+
model_type=model_type,
|
183 |
+
is_eval=True, device=self.device)
|
184 |
+
self.model = model
|
185 |
+
self.vis_processors = vis
|
186 |
+
self.freeze_layers()
|
187 |
+
|
188 |
+
def freeze_layers(self):
|
189 |
+
for p in self.model.parameters():
|
190 |
+
p.requires_grad = False
|
models/contextdet_blip2.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import random
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
from util.misc import (NestedTensor, inverse_sigmoid,
|
9 |
+
nested_tensor_from_tensor_list)
|
10 |
+
|
11 |
+
from .blip2_decoder import BLIP2Decoder
|
12 |
+
from .deformable_detr.backbone import build_backbone
|
13 |
+
from .deformable_detr.deformable_detr import DeformableDETR
|
14 |
+
from .transformer import build_ov_transformer
|
15 |
+
|
16 |
+
|
17 |
+
class ContextDET(DeformableDETR):
|
18 |
+
def __init__(self, backbone, transformer, num_classes, num_queries, num_feature_levels,
|
19 |
+
aux_loss=True, with_box_refine=False, two_stage=False, llm_decoder=None):
|
20 |
+
super().__init__(backbone, transformer, num_classes, num_queries, num_feature_levels,
|
21 |
+
aux_loss, with_box_refine, two_stage)
|
22 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
23 |
+
self.llm_decoder = llm_decoder
|
24 |
+
hidden_dim = transformer.d_model
|
25 |
+
out_size = self.llm_decoder.model.opt_proj.out_features
|
26 |
+
self.llm_proj = nn.Linear(out_size, hidden_dim, device=self.device)
|
27 |
+
self.start_end_proj = nn.Linear(hidden_dim, 2)
|
28 |
+
for layer in [self.llm_proj, self.start_end_proj]:
|
29 |
+
nn.init.kaiming_normal_(layer.weight, mode='fan_in', nonlinearity='relu')
|
30 |
+
nn.init.zeros_(layer.bias)
|
31 |
+
# word_embed_proj_dim = llm_decoder.model.opt_model.config.word_embed_proj_dim
|
32 |
+
vocab_size = llm_decoder.model.opt_model.config.vocab_size
|
33 |
+
self.fc_logits = nn.Linear(hidden_dim, vocab_size)
|
34 |
+
|
35 |
+
def forward(self, samples, blip2_samples, mask_infos=None, task_button=None, threshold=0.3):
|
36 |
+
logits, hidden_states, input_ids, output_text = self.llm_decoder.model.forward(
|
37 |
+
blip2_samples, task_button=task_button)
|
38 |
+
hidden_states = hidden_states.detach()
|
39 |
+
hidden_states = self.llm_proj(hidden_states)
|
40 |
+
|
41 |
+
if not isinstance(samples, NestedTensor):
|
42 |
+
samples = nested_tensor_from_tensor_list(samples)
|
43 |
+
features, pos = self.backbone(samples)
|
44 |
+
|
45 |
+
srcs = []
|
46 |
+
masks = []
|
47 |
+
for l, feat in enumerate(features):
|
48 |
+
src, mask = feat.decompose()
|
49 |
+
srcs.append(self.input_proj[l](src))
|
50 |
+
masks.append(mask)
|
51 |
+
assert mask is not None
|
52 |
+
if self.num_feature_levels > len(srcs):
|
53 |
+
_len_srcs = len(srcs)
|
54 |
+
for l in range(_len_srcs, self.num_feature_levels):
|
55 |
+
if l == _len_srcs:
|
56 |
+
src = self.input_proj[l](features[-1].tensors)
|
57 |
+
else:
|
58 |
+
src = self.input_proj[l](srcs[-1])
|
59 |
+
m = samples.mask
|
60 |
+
mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0]
|
61 |
+
pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype)
|
62 |
+
srcs.append(src)
|
63 |
+
masks.append(mask)
|
64 |
+
pos.append(pos_l)
|
65 |
+
|
66 |
+
out = {}
|
67 |
+
start_end_proj = self.start_end_proj(hidden_states)
|
68 |
+
out['pred_mlm_logits'] = self.fc_logits(hidden_states)
|
69 |
+
out['pred_start'] = start_end_proj[:, :, 0:1]
|
70 |
+
out['pred_end'] = start_end_proj[:, :, 1:2]
|
71 |
+
out['output_text'] = output_text
|
72 |
+
if self.training:
|
73 |
+
k = min([len(mask_info) for mask_info in mask_infos])
|
74 |
+
k = min(k, 2)
|
75 |
+
select_ids = [random.sample(mask_info.keys(), k) for mask_info in mask_infos]
|
76 |
+
# select_ids = [random.choices(list(mask_info.keys()), k=4) for mask_info in mask_infos]
|
77 |
+
llm_feat = []
|
78 |
+
for b in range(len(select_ids)):
|
79 |
+
llm_feat_b = []
|
80 |
+
hidden_states_b = hidden_states[b, :, :]
|
81 |
+
for start, end in select_ids[b]:
|
82 |
+
llm_feat_b.append(hidden_states_b[start: end + 1].mean(dim=0, keepdim=True))
|
83 |
+
llm_feat.append(torch.cat(llm_feat_b)[None])
|
84 |
+
llm_feat = torch.cat(llm_feat)
|
85 |
+
query_embeds = None
|
86 |
+
if not self.two_stage:
|
87 |
+
query_embeds = self.query_embed.weight
|
88 |
+
hs, init_reference, inter_references, enc_outputs_class, enc_outputs_coord_unact, anchors = (
|
89 |
+
self.transformer(srcs, masks, pos, query_embeds, llm_feat, k)
|
90 |
+
)
|
91 |
+
outputs_classes = []
|
92 |
+
outputs_coords = []
|
93 |
+
for lvl in range(hs.shape[0]):
|
94 |
+
if lvl == 0:
|
95 |
+
reference = init_reference
|
96 |
+
else:
|
97 |
+
reference = inter_references[lvl - 1]
|
98 |
+
reference = inverse_sigmoid(reference)
|
99 |
+
outputs_class = self.class_embed[lvl](hs[lvl])
|
100 |
+
tmp = self.bbox_embed[lvl](hs[lvl])
|
101 |
+
if reference.shape[-1] == 4:
|
102 |
+
tmp += reference
|
103 |
+
else:
|
104 |
+
assert reference.shape[-1] == 2
|
105 |
+
tmp[..., :2] += reference
|
106 |
+
outputs_coord = tmp.sigmoid()
|
107 |
+
outputs_classes.append(outputs_class)
|
108 |
+
outputs_coords.append(outputs_coord)
|
109 |
+
outputs_class = torch.stack(outputs_classes)
|
110 |
+
outputs_coord = torch.stack(outputs_coords)
|
111 |
+
|
112 |
+
out.update({'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1],
|
113 |
+
'init_reference': init_reference})
|
114 |
+
out['select_ids'] = select_ids
|
115 |
+
|
116 |
+
if self.aux_loss:
|
117 |
+
out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord)
|
118 |
+
for temp in out["aux_outputs"]:
|
119 |
+
temp["select_ids"] = select_ids
|
120 |
+
|
121 |
+
if self.two_stage:
|
122 |
+
enc_outputs_coord = enc_outputs_coord_unact.sigmoid()
|
123 |
+
out['enc_outputs'] = {
|
124 |
+
'pred_logits': enc_outputs_class,
|
125 |
+
'pred_boxes': enc_outputs_coord,
|
126 |
+
'anchors': anchors,
|
127 |
+
}
|
128 |
+
else:
|
129 |
+
bs = len(samples.tensors)
|
130 |
+
mask_infos_pred = [{} for _ in range(bs)]
|
131 |
+
llm_feat = []
|
132 |
+
tokenizer = self.llm_decoder.model.opt_tokenizer
|
133 |
+
if mask_infos is None:
|
134 |
+
if task_button == 'Cloze Test':
|
135 |
+
mask_infos = []
|
136 |
+
output_texts = []
|
137 |
+
for b in range(bs):
|
138 |
+
mask_infos_b = {}
|
139 |
+
output_texts_b = []
|
140 |
+
for ind, token in enumerate(input_ids[b]):
|
141 |
+
if token == tokenizer.mask_token_id:
|
142 |
+
mask_infos_b[(ind, ind)] = ''
|
143 |
+
pred_token = out['pred_mlm_logits'][b, ind:ind + 1, :]
|
144 |
+
pred_token = pred_token.argmax(1).item()
|
145 |
+
output_texts_b.append( pred_token )
|
146 |
+
output_texts_b.append( 1437 )
|
147 |
+
input_ids[b, ind: ind + 1] = pred_token
|
148 |
+
else:
|
149 |
+
output_texts_b.append( token.item() )
|
150 |
+
mask_infos.append(mask_infos_b)
|
151 |
+
output_texts.append(tokenizer.decode(output_texts_b[1:]))
|
152 |
+
out['output_text'] = output_texts
|
153 |
+
else:
|
154 |
+
mask_infos = []
|
155 |
+
for b in range(bs):
|
156 |
+
starts = (out['pred_start'][b, :, 0].sigmoid() > threshold).nonzero().squeeze(1)
|
157 |
+
ends = (out['pred_end'][b, :, 0].sigmoid() > threshold).nonzero().squeeze(1)
|
158 |
+
if len(starts) == 0:
|
159 |
+
starts = out['pred_start'][b, :].argmax(0)
|
160 |
+
if len(ends) == 0:
|
161 |
+
ends = out['pred_end'][b, :].argmax(0)
|
162 |
+
mask_infos_b = {}
|
163 |
+
for start, end in zip(starts, ends):
|
164 |
+
mask_infos_b[(int(start), int(end))] = ''
|
165 |
+
mask_infos.append(mask_infos_b)
|
166 |
+
for b in range(bs):
|
167 |
+
llm_feat_b = []
|
168 |
+
hidden_states_b = hidden_states[b, :, :]
|
169 |
+
for start, end in mask_infos[b].keys():
|
170 |
+
llm_feat_b.append(hidden_states_b[start: end + 1].mean(dim=0, keepdim=True))
|
171 |
+
pred_name = tokenizer.decode(input_ids[b, start: end + 1]).strip()
|
172 |
+
mask_infos_pred[b][(int(start), int(end))] = pred_name
|
173 |
+
llm_feat.append(torch.cat(llm_feat_b)[None])
|
174 |
+
out['mask_infos_pred'] = mask_infos_pred
|
175 |
+
|
176 |
+
query_embeds = None
|
177 |
+
if not self.two_stage:
|
178 |
+
query_embeds = self.query_embed.weight
|
179 |
+
|
180 |
+
outputs_classes_list = []
|
181 |
+
outputs_coords_list = []
|
182 |
+
for b in range(bs):
|
183 |
+
srcs_b = [i[b: b + 1] for i in srcs]
|
184 |
+
masks_b = [i[b: b + 1] for i in masks]
|
185 |
+
pos_b = [i[b: b + 1] for i in pos]
|
186 |
+
k = len(mask_infos[b])
|
187 |
+
if k == 0:
|
188 |
+
outputs_classes_list.append(torch.zeros(0, 2).to(self.device))
|
189 |
+
outputs_coords_list.append(torch.zeros(0, 4).to(self.device))
|
190 |
+
continue
|
191 |
+
num_repeat = math.ceil(k / 4)
|
192 |
+
outputs_classes = []
|
193 |
+
outputs_coords = []
|
194 |
+
for ind in range(num_repeat):
|
195 |
+
llm_feat_b = llm_feat[b][:, ind * 4: (ind + 1) * 4]
|
196 |
+
hs, init_reference, inter_references, enc_outputs_class, enc_outputs_coord_unact, anchors = (
|
197 |
+
self.transformer(srcs_b, masks_b, pos_b, query_embeds, llm_feat_b, llm_feat_b.shape[1])
|
198 |
+
)
|
199 |
+
lvl = hs.shape[0] - 1
|
200 |
+
reference = inter_references[lvl - 1]
|
201 |
+
reference = inverse_sigmoid(reference)
|
202 |
+
outputs_class = self.class_embed[lvl](hs[lvl])
|
203 |
+
tmp = self.bbox_embed[lvl](hs[lvl])
|
204 |
+
if reference.shape[-1] == 4:
|
205 |
+
tmp += reference
|
206 |
+
else:
|
207 |
+
assert reference.shape[-1] == 2
|
208 |
+
tmp[..., :2] += reference
|
209 |
+
outputs_coord = tmp.sigmoid()
|
210 |
+
outputs_classes.append(outputs_class.flatten(0, 1))
|
211 |
+
outputs_coords.append(outputs_coord.flatten(0, 1))
|
212 |
+
outputs_classes = torch.cat(outputs_classes)[None]
|
213 |
+
outputs_coords = torch.cat(outputs_coords)[None]
|
214 |
+
outputs_classes_list.append(outputs_classes)
|
215 |
+
outputs_coords_list.append(outputs_coords)
|
216 |
+
|
217 |
+
out.update({'pred_logits': outputs_classes_list,
|
218 |
+
'pred_boxes': outputs_coords_list})
|
219 |
+
return out
|
models/deformable_detr/README.md
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
The code in this directory is taken from [Deformable DETR][deformable-detr] and [DETA][deta] with minor modifications to accommodate the latest PyTorch API.
|
2 |
+
|
3 |
+
[deformable-detr]: https://github.com/fundamentalvision/Deformable-DETR
|
4 |
+
|
5 |
+
[deta]: https://github.com/jozhang97/DETA
|
6 |
+
|
7 |
+
```bibtex
|
8 |
+
@article{zhu2020deformable,
|
9 |
+
title={Deformable DETR: Deformable Transformers for End-to-End Object Detection},
|
10 |
+
author={Zhu, Xizhou and Su, Weijie and Lu, Lewei and Li, Bin and Wang, Xiaogang and Dai, Jifeng},
|
11 |
+
journal={arXiv preprint arXiv:2010.04159},
|
12 |
+
year={2020}
|
13 |
+
}
|
14 |
+
```
|
15 |
+
|
16 |
+
```bibtex
|
17 |
+
@article{ouyangzhang2022nms,
|
18 |
+
title={NMS Strikes Back},
|
19 |
+
author={Ouyang-Zhang, Jeffrey and Cho, Jang Hyun and Zhou, Xingyi and Kr{\"a}henb{\"u}hl, Philipp},
|
20 |
+
journal={arXiv preprint arXiv:2212.06137},
|
21 |
+
year={2022}
|
22 |
+
}
|
23 |
+
```
|
models/deformable_detr/assigner.py
ADDED
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# Modified by Jeffrey Ouyang-Zhang
|
3 |
+
|
4 |
+
from typing import List
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
|
9 |
+
from util.box_ops import (box_cxcywh_to_xyxy, box_iou, box_xyxy_to_cxcywh,
|
10 |
+
generalized_box_iou)
|
11 |
+
|
12 |
+
|
13 |
+
# from https://github.com/facebookresearch/detectron2/blob/cbbc1ce26473cb2a5cc8f58e8ada9ae14cb41052/detectron2/layers/wrappers.py#L100
|
14 |
+
def nonzero_tuple(x):
|
15 |
+
"""
|
16 |
+
A 'as_tuple=True' version of torch.nonzero to support torchscript.
|
17 |
+
because of https://github.com/pytorch/pytorch/issues/38718
|
18 |
+
"""
|
19 |
+
if torch.jit.is_scripting():
|
20 |
+
if x.dim() == 0:
|
21 |
+
return x.unsqueeze(0).nonzero().unbind(1)
|
22 |
+
return x.nonzero().unbind(1)
|
23 |
+
else:
|
24 |
+
return x.nonzero(as_tuple=True)
|
25 |
+
|
26 |
+
# from https://github.com/facebookresearch/detectron2/blob/9921a2caa585d4fa66c4b534b6fab6e74d89b582/detectron2/modeling/matcher.py#L9
|
27 |
+
class Matcher(object):
|
28 |
+
"""
|
29 |
+
This class assigns to each predicted "element" (e.g., a box) a ground-truth
|
30 |
+
element. Each predicted element will have exactly zero or one matches; each
|
31 |
+
ground-truth element may be matched to zero or more predicted elements.
|
32 |
+
|
33 |
+
The matching is determined by the MxN match_quality_matrix, that characterizes
|
34 |
+
how well each (ground-truth, prediction)-pair match each other. For example,
|
35 |
+
if the elements are boxes, this matrix may contain box intersection-over-union
|
36 |
+
overlap values.
|
37 |
+
|
38 |
+
The matcher returns (a) a vector of length N containing the index of the
|
39 |
+
ground-truth element m in [0, M) that matches to prediction n in [0, N).
|
40 |
+
(b) a vector of length N containing the labels for each prediction.
|
41 |
+
"""
|
42 |
+
|
43 |
+
def __init__(
|
44 |
+
self, thresholds: List[float], labels: List[int], allow_low_quality_matches: bool = False
|
45 |
+
):
|
46 |
+
"""
|
47 |
+
Args:
|
48 |
+
thresholds (list): a list of thresholds used to stratify predictions
|
49 |
+
into levels.
|
50 |
+
labels (list): a list of values to label predictions belonging at
|
51 |
+
each level. A label can be one of {-1, 0, 1} signifying
|
52 |
+
{ignore, negative class, positive class}, respectively.
|
53 |
+
allow_low_quality_matches (bool): if True, produce additional matches
|
54 |
+
for predictions with maximum match quality lower than high_threshold.
|
55 |
+
See set_low_quality_matches_ for more details.
|
56 |
+
|
57 |
+
For example,
|
58 |
+
thresholds = [0.3, 0.5]
|
59 |
+
labels = [0, -1, 1]
|
60 |
+
All predictions with iou < 0.3 will be marked with 0 and
|
61 |
+
thus will be considered as false positives while training.
|
62 |
+
All predictions with 0.3 <= iou < 0.5 will be marked with -1 and
|
63 |
+
thus will be ignored.
|
64 |
+
All predictions with 0.5 <= iou will be marked with 1 and
|
65 |
+
thus will be considered as true positives.
|
66 |
+
"""
|
67 |
+
# Add -inf and +inf to first and last position in thresholds
|
68 |
+
thresholds = thresholds[:]
|
69 |
+
assert thresholds[0] > 0
|
70 |
+
thresholds.insert(0, -float("inf"))
|
71 |
+
thresholds.append(float("inf"))
|
72 |
+
# Currently torchscript does not support all + generator
|
73 |
+
assert all([low <= high for (low, high) in zip(thresholds[:-1], thresholds[1:])]), thresholds
|
74 |
+
assert all([l in [-1, 0, 1] for l in labels])
|
75 |
+
assert len(labels) == len(thresholds) - 1
|
76 |
+
self.thresholds = thresholds
|
77 |
+
self.labels = labels
|
78 |
+
self.allow_low_quality_matches = allow_low_quality_matches
|
79 |
+
|
80 |
+
def __call__(self, match_quality_matrix):
|
81 |
+
"""
|
82 |
+
Args:
|
83 |
+
match_quality_matrix (Tensor[float]): an MxN tensor, containing the
|
84 |
+
pairwise quality between M ground-truth elements and N predicted
|
85 |
+
elements. All elements must be >= 0 (due to the us of `torch.nonzero`
|
86 |
+
for selecting indices in :meth:`set_low_quality_matches_`).
|
87 |
+
|
88 |
+
Returns:
|
89 |
+
matches (Tensor[int64]): a vector of length N, where matches[i] is a matched
|
90 |
+
ground-truth index in [0, M)
|
91 |
+
match_labels (Tensor[int8]): a vector of length N, where pred_labels[i] indicates
|
92 |
+
whether a prediction is a true or false positive or ignored
|
93 |
+
"""
|
94 |
+
assert match_quality_matrix.dim() == 2
|
95 |
+
if match_quality_matrix.numel() == 0:
|
96 |
+
default_matches = match_quality_matrix.new_full(
|
97 |
+
(match_quality_matrix.size(1),), 0, dtype=torch.int64
|
98 |
+
)
|
99 |
+
# When no gt boxes exist, we define IOU = 0 and therefore set labels
|
100 |
+
# to `self.labels[0]`, which usually defaults to background class 0
|
101 |
+
# To choose to ignore instead, can make labels=[-1,0,-1,1] + set appropriate thresholds
|
102 |
+
default_match_labels = match_quality_matrix.new_full(
|
103 |
+
(match_quality_matrix.size(1),), self.labels[0], dtype=torch.int8
|
104 |
+
)
|
105 |
+
return default_matches, default_match_labels
|
106 |
+
|
107 |
+
assert torch.all(match_quality_matrix >= 0)
|
108 |
+
|
109 |
+
# match_quality_matrix is M (gt) x N (predicted)
|
110 |
+
# Max over gt elements (dim 0) to find best gt candidate for each prediction
|
111 |
+
matched_vals, matches = match_quality_matrix.max(dim=0)
|
112 |
+
|
113 |
+
match_labels = matches.new_full(matches.size(), 1, dtype=torch.int8)
|
114 |
+
|
115 |
+
for (l, low, high) in zip(self.labels, self.thresholds[:-1], self.thresholds[1:]):
|
116 |
+
low_high = (matched_vals >= low) & (matched_vals < high)
|
117 |
+
match_labels[low_high] = l
|
118 |
+
|
119 |
+
if self.allow_low_quality_matches:
|
120 |
+
self.set_low_quality_matches_(match_labels, match_quality_matrix)
|
121 |
+
|
122 |
+
return matches, match_labels
|
123 |
+
|
124 |
+
def set_low_quality_matches_(self, match_labels, match_quality_matrix):
|
125 |
+
"""
|
126 |
+
Produce additional matches for predictions that have only low-quality matches.
|
127 |
+
Specifically, for each ground-truth G find the set of predictions that have
|
128 |
+
maximum overlap with it (including ties); for each prediction in that set, if
|
129 |
+
it is unmatched, then match it to the ground-truth G.
|
130 |
+
|
131 |
+
This function implements the RPN assignment case (i) in Sec. 3.1.2 of
|
132 |
+
:paper:`Faster R-CNN`.
|
133 |
+
"""
|
134 |
+
# For each gt, find the prediction with which it has highest quality
|
135 |
+
highest_quality_foreach_gt, _ = match_quality_matrix.max(dim=1)
|
136 |
+
# Find the highest quality match available, even if it is low, including ties.
|
137 |
+
# Note that the matches qualities must be positive due to the use of
|
138 |
+
# `torch.nonzero`.
|
139 |
+
_, pred_inds_with_highest_quality = nonzero_tuple(
|
140 |
+
match_quality_matrix == highest_quality_foreach_gt[:, None]
|
141 |
+
)
|
142 |
+
# If an anchor was labeled positive only due to a low-quality match
|
143 |
+
# with gt_A, but it has larger overlap with gt_B, it's matched index will still be gt_B.
|
144 |
+
# This follows the implementation in Detectron, and is found to have no significant impact.
|
145 |
+
match_labels[pred_inds_with_highest_quality] = 1
|
146 |
+
|
147 |
+
# from https://github.com/facebookresearch/detectron2/blob/cbbc1ce26473cb2a5cc8f58e8ada9ae14cb41052/detectron2/modeling/sampling.py#L9
|
148 |
+
def subsample_labels(
|
149 |
+
labels: torch.Tensor, num_samples: int, positive_fraction: float, bg_label: int
|
150 |
+
):
|
151 |
+
"""
|
152 |
+
Return `num_samples` (or fewer, if not enough found)
|
153 |
+
random samples from `labels` which is a mixture of positives & negatives.
|
154 |
+
It will try to return as many positives as possible without
|
155 |
+
exceeding `positive_fraction * num_samples`, and then try to
|
156 |
+
fill the remaining slots with negatives.
|
157 |
+
|
158 |
+
Args:
|
159 |
+
labels (Tensor): (N, ) label vector with values:
|
160 |
+
* -1: ignore
|
161 |
+
* bg_label: background ("negative") class
|
162 |
+
* otherwise: one or more foreground ("positive") classes
|
163 |
+
num_samples (int): The total number of labels with value >= 0 to return.
|
164 |
+
Values that are not sampled will be filled with -1 (ignore).
|
165 |
+
positive_fraction (float): The number of subsampled labels with values > 0
|
166 |
+
is `min(num_positives, int(positive_fraction * num_samples))`. The number
|
167 |
+
of negatives sampled is `min(num_negatives, num_samples - num_positives_sampled)`.
|
168 |
+
In order words, if there are not enough positives, the sample is filled with
|
169 |
+
negatives. If there are also not enough negatives, then as many elements are
|
170 |
+
sampled as is possible.
|
171 |
+
bg_label (int): label index of background ("negative") class.
|
172 |
+
|
173 |
+
Returns:
|
174 |
+
pos_idx, neg_idx (Tensor):
|
175 |
+
1D vector of indices. The total length of both is `num_samples` or fewer.
|
176 |
+
"""
|
177 |
+
positive = nonzero_tuple((labels != -1) & (labels != bg_label))[0]
|
178 |
+
negative = nonzero_tuple(labels == bg_label)[0]
|
179 |
+
|
180 |
+
num_pos = int(num_samples * positive_fraction)
|
181 |
+
# protect against not enough positive examples
|
182 |
+
num_pos = min(positive.numel(), num_pos)
|
183 |
+
num_neg = num_samples - num_pos
|
184 |
+
# protect against not enough negative examples
|
185 |
+
num_neg = min(negative.numel(), num_neg)
|
186 |
+
|
187 |
+
# randomly select positive and negative examples
|
188 |
+
perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
|
189 |
+
perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]
|
190 |
+
|
191 |
+
pos_idx = positive[perm1]
|
192 |
+
neg_idx = negative[perm2]
|
193 |
+
return pos_idx, neg_idx
|
194 |
+
|
195 |
+
def sample_topk_per_gt(pr_inds, gt_inds, iou, k):
|
196 |
+
if len(gt_inds) == 0:
|
197 |
+
return pr_inds, gt_inds
|
198 |
+
# find topk matches for each gt
|
199 |
+
gt_inds2, counts = gt_inds.unique(return_counts=True)
|
200 |
+
scores, pr_inds2 = iou[gt_inds2].topk(k, dim=1)
|
201 |
+
gt_inds2 = gt_inds2[:,None].repeat(1, k)
|
202 |
+
|
203 |
+
# filter to as many matches that gt has
|
204 |
+
pr_inds3 = torch.cat([pr[:c] for c, pr in zip(counts, pr_inds2)])
|
205 |
+
gt_inds3 = torch.cat([gt[:c] for c, gt in zip(counts, gt_inds2)])
|
206 |
+
return pr_inds3, gt_inds3
|
207 |
+
|
208 |
+
# modified from https://github.com/facebookresearch/detectron2/blob/cbbc1ce26473cb2a5cc8f58e8ada9ae14cb41052/detectron2/modeling/roi_heads/roi_heads.py#L123
|
209 |
+
class Stage2Assigner(nn.Module):
|
210 |
+
def __init__(self, num_queries, max_k=4):
|
211 |
+
super().__init__()
|
212 |
+
self.positive_fraction = 0.25
|
213 |
+
self.bg_label = 400 # number > 91 to filter out later
|
214 |
+
self.batch_size_per_image = num_queries
|
215 |
+
self.proposal_matcher = Matcher(thresholds=[0.6], labels=[0, 1], allow_low_quality_matches=True)
|
216 |
+
self.k = max_k
|
217 |
+
|
218 |
+
def _sample_proposals(
|
219 |
+
self, matched_idxs: torch.Tensor, matched_labels: torch.Tensor, gt_classes: torch.Tensor
|
220 |
+
):
|
221 |
+
"""
|
222 |
+
Based on the matching between N proposals and M groundtruth,
|
223 |
+
sample the proposals and set their classification labels.
|
224 |
+
|
225 |
+
Args:
|
226 |
+
matched_idxs (Tensor): a vector of length N, each is the best-matched
|
227 |
+
gt index in [0, M) for each proposal.
|
228 |
+
matched_labels (Tensor): a vector of length N, the matcher's label
|
229 |
+
(one of cfg.MODEL.ROI_HEADS.IOU_LABELS) for each proposal.
|
230 |
+
gt_classes (Tensor): a vector of length M.
|
231 |
+
|
232 |
+
Returns:
|
233 |
+
Tensor: a vector of indices of sampled proposals. Each is in [0, N).
|
234 |
+
Tensor: a vector of the same length, the classification label for
|
235 |
+
each sampled proposal. Each sample is labeled as either a category in
|
236 |
+
[0, num_classes) or the background (num_classes).
|
237 |
+
"""
|
238 |
+
has_gt = gt_classes.numel() > 0
|
239 |
+
# Get the corresponding GT for each proposal
|
240 |
+
if has_gt:
|
241 |
+
gt_classes = gt_classes[matched_idxs]
|
242 |
+
# Label unmatched proposals (0 label from matcher) as background (label=num_classes)
|
243 |
+
gt_classes[matched_labels == 0] = self.bg_label
|
244 |
+
# Label ignore proposals (-1 label)
|
245 |
+
gt_classes[matched_labels == -1] = -1
|
246 |
+
else:
|
247 |
+
gt_classes = torch.zeros_like(matched_idxs) + self.bg_label
|
248 |
+
|
249 |
+
sampled_fg_idxs, sampled_bg_idxs = subsample_labels(
|
250 |
+
gt_classes, self.batch_size_per_image, self.positive_fraction, self.bg_label
|
251 |
+
)
|
252 |
+
|
253 |
+
sampled_idxs = torch.cat([sampled_fg_idxs, sampled_bg_idxs], dim=0)
|
254 |
+
return sampled_idxs, gt_classes[sampled_idxs]
|
255 |
+
|
256 |
+
def forward(self, outputs, targets, return_cost_matrix=False):
|
257 |
+
# COCO categories are from 1 to 90. They set num_classes=91 and apply sigmoid.
|
258 |
+
|
259 |
+
bs = len(targets)
|
260 |
+
indices = []
|
261 |
+
ious = []
|
262 |
+
for b in range(bs):
|
263 |
+
iou, _ = box_iou(
|
264 |
+
box_cxcywh_to_xyxy(targets[b]['boxes']),
|
265 |
+
box_cxcywh_to_xyxy(outputs['init_reference'][b].detach()),
|
266 |
+
)
|
267 |
+
matched_idxs, matched_labels = self.proposal_matcher(iou) # proposal_id -> highest_iou_gt_id, proposal_id -> [1 if iou > 0.6, 0 ow]
|
268 |
+
sampled_idxs, sampled_gt_classes = self._sample_proposals( # list of sampled proposal_ids, sampled_id -> [0, num_classes)+[bg_label]
|
269 |
+
matched_idxs, matched_labels, targets[b]['labels']
|
270 |
+
)
|
271 |
+
pos_pr_inds = sampled_idxs[sampled_gt_classes != self.bg_label]
|
272 |
+
pos_gt_inds = matched_idxs[pos_pr_inds]
|
273 |
+
pos_pr_inds, pos_gt_inds = self.postprocess_indices(pos_pr_inds, pos_gt_inds, iou)
|
274 |
+
indices.append((pos_pr_inds, pos_gt_inds))
|
275 |
+
ious.append(iou)
|
276 |
+
if return_cost_matrix:
|
277 |
+
return indices, ious
|
278 |
+
return indices
|
279 |
+
|
280 |
+
def postprocess_indices(self, pr_inds, gt_inds, iou):
|
281 |
+
return sample_topk_per_gt(pr_inds, gt_inds, iou, self.k)
|
282 |
+
|
283 |
+
# modified from https://github.com/facebookresearch/detectron2/blob/cbbc1ce26473cb2a5cc8f58e8ada9ae14cb41052/detectron2/modeling/proposal_generator/rpn.py#L181
|
284 |
+
class Stage1Assigner(nn.Module):
|
285 |
+
def __init__(self, t_low=0.3, t_high=0.7, max_k=4):
|
286 |
+
super().__init__()
|
287 |
+
self.positive_fraction = 0.5
|
288 |
+
self.batch_size_per_image = 256
|
289 |
+
self.k = max_k
|
290 |
+
self.t_low = t_low
|
291 |
+
self.t_high = t_high
|
292 |
+
self.anchor_matcher = Matcher(thresholds=[t_low, t_high], labels=[0, -1, 1], allow_low_quality_matches=True)
|
293 |
+
|
294 |
+
def _subsample_labels(self, label):
|
295 |
+
"""
|
296 |
+
Randomly sample a subset of positive and negative examples, and overwrite
|
297 |
+
the label vector to the ignore value (-1) for all elements that are not
|
298 |
+
included in the sample.
|
299 |
+
|
300 |
+
Args:
|
301 |
+
labels (Tensor): a vector of -1, 0, 1. Will be modified in-place and returned.
|
302 |
+
"""
|
303 |
+
pos_idx, neg_idx = subsample_labels(
|
304 |
+
label, self.batch_size_per_image, self.positive_fraction, 0
|
305 |
+
)
|
306 |
+
# Fill with the ignore label (-1), then set positive and negative labels
|
307 |
+
label.fill_(-1)
|
308 |
+
label.scatter_(0, pos_idx, 1)
|
309 |
+
label.scatter_(0, neg_idx, 0)
|
310 |
+
return label
|
311 |
+
|
312 |
+
def forward(self, outputs, targets):
|
313 |
+
bs = len(targets)
|
314 |
+
indices = []
|
315 |
+
for b in range(bs):
|
316 |
+
anchors = outputs['anchors'][b]
|
317 |
+
if len(targets[b]['boxes']) == 0:
|
318 |
+
indices.append((torch.tensor([], dtype=torch.long, device=anchors.device),
|
319 |
+
torch.tensor([], dtype=torch.long, device=anchors.device)))
|
320 |
+
continue
|
321 |
+
iou, _ = box_iou(
|
322 |
+
box_cxcywh_to_xyxy(targets[b]['boxes']),
|
323 |
+
box_cxcywh_to_xyxy(anchors),
|
324 |
+
)
|
325 |
+
matched_idxs, matched_labels = self.anchor_matcher(iou) # proposal_id -> highest_iou_gt_id, proposal_id -> [1 if iou > 0.7, 0 if iou < 0.3, -1 ow]
|
326 |
+
matched_labels = self._subsample_labels(matched_labels)
|
327 |
+
|
328 |
+
all_pr_inds = torch.arange(len(anchors))
|
329 |
+
pos_pr_inds = all_pr_inds[matched_labels == 1]
|
330 |
+
pos_gt_inds = matched_idxs[pos_pr_inds]
|
331 |
+
pos_ious = iou[pos_gt_inds, pos_pr_inds]
|
332 |
+
pos_pr_inds, pos_gt_inds = self.postprocess_indices(pos_pr_inds, pos_gt_inds, iou)
|
333 |
+
pos_pr_inds, pos_gt_inds = pos_pr_inds.to(anchors.device), pos_gt_inds.to(anchors.device)
|
334 |
+
indices.append((pos_pr_inds, pos_gt_inds))
|
335 |
+
return indices
|
336 |
+
|
337 |
+
def postprocess_indices(self, pr_inds, gt_inds, iou):
|
338 |
+
return sample_topk_per_gt(pr_inds, gt_inds, iou, self.k)
|
models/deformable_detr/backbone.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Deformable DETR
|
3 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------
|
6 |
+
# Modified from DETR (https://github.com/facebookresearch/detr)
|
7 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
8 |
+
# ------------------------------------------------------------------------
|
9 |
+
|
10 |
+
"""
|
11 |
+
Backbone modules.
|
12 |
+
"""
|
13 |
+
from collections import OrderedDict
|
14 |
+
from typing import Dict, List
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
import torchvision
|
19 |
+
from torch import nn
|
20 |
+
from torchvision.models._utils import IntermediateLayerGetter
|
21 |
+
|
22 |
+
from util.misc import NestedTensor, is_main_process
|
23 |
+
|
24 |
+
from .position_encoding import build_position_encoding
|
25 |
+
from .swin import get_swinb, get_swinl
|
26 |
+
|
27 |
+
|
28 |
+
class FrozenBatchNorm2d(torch.nn.Module):
|
29 |
+
"""
|
30 |
+
BatchNorm2d where the batch statistics and the affine parameters are fixed.
|
31 |
+
|
32 |
+
Copy-paste from torchvision.misc.ops with added eps before rqsrt,
|
33 |
+
without which any other models than torchvision.models.resnet[18,34,50,101]
|
34 |
+
produce nans.
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(self, n, eps=1e-5):
|
38 |
+
super(FrozenBatchNorm2d, self).__init__()
|
39 |
+
self.register_buffer("weight", torch.ones(n))
|
40 |
+
self.register_buffer("bias", torch.zeros(n))
|
41 |
+
self.register_buffer("running_mean", torch.zeros(n))
|
42 |
+
self.register_buffer("running_var", torch.ones(n))
|
43 |
+
self.eps = eps
|
44 |
+
|
45 |
+
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
|
46 |
+
missing_keys, unexpected_keys, error_msgs):
|
47 |
+
num_batches_tracked_key = prefix + 'num_batches_tracked'
|
48 |
+
if num_batches_tracked_key in state_dict:
|
49 |
+
del state_dict[num_batches_tracked_key]
|
50 |
+
|
51 |
+
super(FrozenBatchNorm2d, self)._load_from_state_dict(
|
52 |
+
state_dict, prefix, local_metadata, strict,
|
53 |
+
missing_keys, unexpected_keys, error_msgs)
|
54 |
+
|
55 |
+
def forward(self, x):
|
56 |
+
# move reshapes to the beginning
|
57 |
+
# to make it fuser-friendly
|
58 |
+
w = self.weight.reshape(1, -1, 1, 1)
|
59 |
+
b = self.bias.reshape(1, -1, 1, 1)
|
60 |
+
rv = self.running_var.reshape(1, -1, 1, 1)
|
61 |
+
rm = self.running_mean.reshape(1, -1, 1, 1)
|
62 |
+
eps = self.eps
|
63 |
+
scale = w * (rv + eps).rsqrt()
|
64 |
+
bias = b - rm * scale
|
65 |
+
return x * scale + bias
|
66 |
+
|
67 |
+
|
68 |
+
class BackboneBase(nn.Module):
|
69 |
+
|
70 |
+
def __init__(self, backbone: nn.Module, train_backbone: bool, return_interm_layers: bool):
|
71 |
+
super().__init__()
|
72 |
+
for name, parameter in backbone.named_parameters():
|
73 |
+
if not train_backbone or 'layer2' not in name and 'layer3' not in name and 'layer4' not in name:
|
74 |
+
parameter.requires_grad_(False)
|
75 |
+
if return_interm_layers:
|
76 |
+
# return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"}
|
77 |
+
return_layers = {"layer2": "0", "layer3": "1", "layer4": "2"}
|
78 |
+
self.strides = [8, 16, 32]
|
79 |
+
self.num_channels = [512, 1024, 2048]
|
80 |
+
else:
|
81 |
+
return_layers = {'layer4': "0"}
|
82 |
+
self.strides = [32]
|
83 |
+
self.num_channels = [2048]
|
84 |
+
self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
|
85 |
+
|
86 |
+
def forward(self, tensor_list: NestedTensor):
|
87 |
+
xs = self.body(tensor_list.tensors)
|
88 |
+
out: Dict[str, NestedTensor] = {}
|
89 |
+
for name, x in xs.items():
|
90 |
+
m = tensor_list.mask
|
91 |
+
assert m is not None
|
92 |
+
mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0]
|
93 |
+
out[name] = NestedTensor(x, mask)
|
94 |
+
return out
|
95 |
+
|
96 |
+
|
97 |
+
class Backbone(BackboneBase):
|
98 |
+
"""ResNet backbone with frozen BatchNorm."""
|
99 |
+
def __init__(self, name: str,
|
100 |
+
train_backbone: bool,
|
101 |
+
return_interm_layers: bool,
|
102 |
+
dilation: bool):
|
103 |
+
norm_layer = FrozenBatchNorm2d
|
104 |
+
backbone = getattr(torchvision.models, name)(
|
105 |
+
replace_stride_with_dilation=[False, False, dilation],
|
106 |
+
pretrained=is_main_process(), norm_layer=norm_layer)
|
107 |
+
assert name not in ('resnet18', 'resnet34'), "number of channels are hard coded"
|
108 |
+
super().__init__(backbone, train_backbone, return_interm_layers)
|
109 |
+
if dilation:
|
110 |
+
self.strides[-1] = self.strides[-1] // 2
|
111 |
+
|
112 |
+
|
113 |
+
class SwinBackbone(nn.Module):
|
114 |
+
def __init__(self):
|
115 |
+
# we skip R50 FrozenBatchNorm2d, dilation, train l{2,3,4} only
|
116 |
+
super().__init__()
|
117 |
+
# self.body = get_swinl()
|
118 |
+
self.body = get_swinb()
|
119 |
+
self.features = ['res3', 'res4', 'res5']
|
120 |
+
self.strides = [8, 16, 32]
|
121 |
+
self.num_channels = [256, 512, 1024]
|
122 |
+
|
123 |
+
def forward(self, tensor_list: NestedTensor):
|
124 |
+
xs = self.body(tensor_list.tensors)
|
125 |
+
m = tensor_list.mask[None]
|
126 |
+
assert m is not None
|
127 |
+
out: Dict[str, NestedTensor] = {}
|
128 |
+
for name in self.features:
|
129 |
+
mask = F.interpolate(m.float(), size=xs[name].shape[-2:]).to(torch.bool)[0]
|
130 |
+
out[name] = NestedTensor(xs[name], mask)
|
131 |
+
return out
|
132 |
+
|
133 |
+
|
134 |
+
class Joiner(nn.Sequential):
|
135 |
+
def __init__(self, backbone, position_embedding):
|
136 |
+
super().__init__(backbone, position_embedding)
|
137 |
+
self.strides = backbone.strides
|
138 |
+
self.num_channels = backbone.num_channels
|
139 |
+
|
140 |
+
def forward(self, tensor_list: NestedTensor):
|
141 |
+
xs = self[0](tensor_list)
|
142 |
+
out: List[NestedTensor] = []
|
143 |
+
pos = []
|
144 |
+
for name, x in sorted(xs.items()):
|
145 |
+
out.append(x)
|
146 |
+
|
147 |
+
# position encoding
|
148 |
+
for x in out:
|
149 |
+
pos.append(self[1](x).to(x.tensors.dtype))
|
150 |
+
|
151 |
+
return out, pos
|
152 |
+
|
153 |
+
|
154 |
+
def build_backbone(args):
|
155 |
+
position_embedding = build_position_encoding(args)
|
156 |
+
train_backbone = args.lr_backbone > 0
|
157 |
+
return_interm_layers = args.masks or (args.num_feature_levels > 1)
|
158 |
+
if 'swin' in args.backbone:
|
159 |
+
backbone = SwinBackbone()
|
160 |
+
else:
|
161 |
+
backbone = Backbone(args.backbone, train_backbone, return_interm_layers, args.dilation)
|
162 |
+
model = Joiner(backbone, position_embedding)
|
163 |
+
return model
|
models/deformable_detr/deformable_detr.py
ADDED
@@ -0,0 +1,582 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Deformable DETR
|
3 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------
|
6 |
+
# Modified from DETR (https://github.com/facebookresearch/detr)
|
7 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
8 |
+
# ------------------------------------------------------------------------
|
9 |
+
|
10 |
+
"""
|
11 |
+
Deformable DETR model and criterion classes.
|
12 |
+
"""
|
13 |
+
import copy
|
14 |
+
import math
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from torch import nn
|
19 |
+
from torchvision.ops.boxes import batched_nms
|
20 |
+
|
21 |
+
from util import box_ops
|
22 |
+
from util.misc import (NestedTensor, accuracy, get_world_size, interpolate,
|
23 |
+
inverse_sigmoid, is_dist_avail_and_initialized,
|
24 |
+
nested_tensor_from_tensor_list)
|
25 |
+
|
26 |
+
from .assigner import Stage1Assigner, Stage2Assigner
|
27 |
+
from .backbone import build_backbone
|
28 |
+
from .deformable_transformer import build_deforamble_transformer
|
29 |
+
from .matcher import build_matcher
|
30 |
+
from .segmentation import (DETRsegm, PostProcessPanoptic, PostProcessSegm,
|
31 |
+
dice_loss, sigmoid_focal_loss)
|
32 |
+
|
33 |
+
|
34 |
+
def _get_clones(module, N):
|
35 |
+
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
36 |
+
|
37 |
+
|
38 |
+
class DeformableDETR(nn.Module):
|
39 |
+
""" This is the Deformable DETR module that performs object detection """
|
40 |
+
def __init__(self, backbone, transformer, num_classes, num_queries, num_feature_levels,
|
41 |
+
aux_loss=True, with_box_refine=False, two_stage=False):
|
42 |
+
""" Initializes the model.
|
43 |
+
Parameters:
|
44 |
+
backbone: torch module of the backbone to be used. See backbone.py
|
45 |
+
transformer: torch module of the transformer architecture. See transformer.py
|
46 |
+
num_classes: number of object classes
|
47 |
+
num_queries: number of object queries, ie detection slot. This is the maximal number of objects
|
48 |
+
DETR can detect in a single image. For COCO, we recommend 100 queries.
|
49 |
+
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
|
50 |
+
with_box_refine: iterative bounding box refinement
|
51 |
+
two_stage: two-stage Deformable DETR
|
52 |
+
"""
|
53 |
+
super().__init__()
|
54 |
+
self.num_queries = num_queries
|
55 |
+
self.transformer = transformer
|
56 |
+
hidden_dim = transformer.d_model
|
57 |
+
self.class_embed = nn.Linear(hidden_dim, num_classes)
|
58 |
+
self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
|
59 |
+
self.num_feature_levels = num_feature_levels
|
60 |
+
if not two_stage:
|
61 |
+
self.query_embed = nn.Embedding(num_queries, hidden_dim*2)
|
62 |
+
if num_feature_levels > 1:
|
63 |
+
num_backbone_outs = len(backbone.strides)
|
64 |
+
input_proj_list = []
|
65 |
+
for _ in range(num_backbone_outs):
|
66 |
+
in_channels = backbone.num_channels[_]
|
67 |
+
input_proj_list.append(nn.Sequential(
|
68 |
+
nn.Conv2d(in_channels, hidden_dim, kernel_size=1),
|
69 |
+
nn.GroupNorm(32, hidden_dim),
|
70 |
+
))
|
71 |
+
for _ in range(num_feature_levels - num_backbone_outs):
|
72 |
+
input_proj_list.append(nn.Sequential(
|
73 |
+
nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=2, padding=1),
|
74 |
+
nn.GroupNorm(32, hidden_dim),
|
75 |
+
))
|
76 |
+
in_channels = hidden_dim
|
77 |
+
self.input_proj = nn.ModuleList(input_proj_list)
|
78 |
+
else:
|
79 |
+
self.input_proj = nn.ModuleList([
|
80 |
+
nn.Sequential(
|
81 |
+
nn.Conv2d(backbone.num_channels[0], hidden_dim, kernel_size=1),
|
82 |
+
nn.GroupNorm(32, hidden_dim),
|
83 |
+
)])
|
84 |
+
self.backbone = backbone
|
85 |
+
self.aux_loss = aux_loss
|
86 |
+
self.with_box_refine = with_box_refine
|
87 |
+
self.two_stage = two_stage
|
88 |
+
|
89 |
+
prior_prob = 0.01
|
90 |
+
bias_value = -math.log((1 - prior_prob) / prior_prob)
|
91 |
+
self.class_embed.bias.data = torch.ones(num_classes) * bias_value
|
92 |
+
nn.init.constant_(self.bbox_embed.layers[-1].weight.data, 0)
|
93 |
+
nn.init.constant_(self.bbox_embed.layers[-1].bias.data, 0)
|
94 |
+
for proj in self.input_proj:
|
95 |
+
nn.init.xavier_uniform_(proj[0].weight, gain=1)
|
96 |
+
nn.init.constant_(proj[0].bias, 0)
|
97 |
+
|
98 |
+
# if two-stage, the last class_embed and bbox_embed is for region proposal generation
|
99 |
+
num_pred = (transformer.decoder.num_layers + 1) if two_stage else transformer.decoder.num_layers
|
100 |
+
if with_box_refine:
|
101 |
+
self.class_embed = _get_clones(self.class_embed, num_pred)
|
102 |
+
self.bbox_embed = _get_clones(self.bbox_embed, num_pred)
|
103 |
+
nn.init.constant_(self.bbox_embed[0].layers[-1].bias.data[2:], -2.0)
|
104 |
+
# hack implementation for iterative bounding box refinement
|
105 |
+
self.transformer.decoder.bbox_embed = self.bbox_embed
|
106 |
+
else:
|
107 |
+
nn.init.constant_(self.bbox_embed.layers[-1].bias.data[2:], -2.0)
|
108 |
+
self.class_embed = nn.ModuleList([self.class_embed for _ in range(num_pred)])
|
109 |
+
self.bbox_embed = nn.ModuleList([self.bbox_embed for _ in range(num_pred)])
|
110 |
+
self.transformer.decoder.bbox_embed = None
|
111 |
+
if two_stage:
|
112 |
+
# hack implementation for two-stage
|
113 |
+
self.transformer.decoder.class_embed = self.class_embed
|
114 |
+
for box_embed in self.bbox_embed:
|
115 |
+
nn.init.constant_(box_embed.layers[-1].bias.data[2:], 0.0)
|
116 |
+
|
117 |
+
def forward(self, samples: NestedTensor):
|
118 |
+
""" The forward expects a NestedTensor, which consists of:
|
119 |
+
- samples.tensor: batched images, of shape [batch_size x 3 x H x W]
|
120 |
+
- samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels
|
121 |
+
|
122 |
+
It returns a dict with the following elements:
|
123 |
+
- "pred_logits": the classification logits (including no-object) for all queries.
|
124 |
+
Shape= [batch_size x num_queries x (num_classes + 1)]
|
125 |
+
- "pred_boxes": The normalized boxes coordinates for all queries, represented as
|
126 |
+
(center_x, center_y, height, width). These values are normalized in [0, 1],
|
127 |
+
relative to the size of each individual image (disregarding possible padding).
|
128 |
+
See PostProcess for information on how to retrieve the unnormalized bounding box.
|
129 |
+
- "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of
|
130 |
+
dictionnaries containing the two above keys for each decoder layer.
|
131 |
+
"""
|
132 |
+
if not isinstance(samples, NestedTensor):
|
133 |
+
samples = nested_tensor_from_tensor_list(samples)
|
134 |
+
features, pos = self.backbone(samples)
|
135 |
+
|
136 |
+
srcs = []
|
137 |
+
masks = []
|
138 |
+
for l, feat in enumerate(features):
|
139 |
+
src, mask = feat.decompose()
|
140 |
+
srcs.append(self.input_proj[l](src))
|
141 |
+
masks.append(mask)
|
142 |
+
assert mask is not None
|
143 |
+
if self.num_feature_levels > len(srcs):
|
144 |
+
_len_srcs = len(srcs)
|
145 |
+
for l in range(_len_srcs, self.num_feature_levels):
|
146 |
+
if l == _len_srcs:
|
147 |
+
src = self.input_proj[l](features[-1].tensors)
|
148 |
+
else:
|
149 |
+
src = self.input_proj[l](srcs[-1])
|
150 |
+
m = samples.mask
|
151 |
+
mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0]
|
152 |
+
pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype)
|
153 |
+
srcs.append(src)
|
154 |
+
masks.append(mask)
|
155 |
+
pos.append(pos_l)
|
156 |
+
|
157 |
+
query_embeds = None
|
158 |
+
if not self.two_stage:
|
159 |
+
query_embeds = self.query_embed.weight
|
160 |
+
hs, init_reference, inter_references, enc_outputs_class, enc_outputs_coord_unact, anchors = self.transformer(srcs, masks, pos, query_embeds)
|
161 |
+
|
162 |
+
outputs_classes = []
|
163 |
+
outputs_coords = []
|
164 |
+
for lvl in range(hs.shape[0]):
|
165 |
+
if lvl == 0:
|
166 |
+
reference = init_reference
|
167 |
+
else:
|
168 |
+
reference = inter_references[lvl - 1]
|
169 |
+
reference = inverse_sigmoid(reference)
|
170 |
+
outputs_class = self.class_embed[lvl](hs[lvl])
|
171 |
+
tmp = self.bbox_embed[lvl](hs[lvl])
|
172 |
+
if reference.shape[-1] == 4:
|
173 |
+
tmp += reference
|
174 |
+
else:
|
175 |
+
assert reference.shape[-1] == 2
|
176 |
+
tmp[..., :2] += reference
|
177 |
+
outputs_coord = tmp.sigmoid()
|
178 |
+
outputs_classes.append(outputs_class)
|
179 |
+
outputs_coords.append(outputs_coord)
|
180 |
+
outputs_class = torch.stack(outputs_classes)
|
181 |
+
outputs_coord = torch.stack(outputs_coords)
|
182 |
+
|
183 |
+
out = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1],
|
184 |
+
'init_reference': init_reference}
|
185 |
+
if self.aux_loss:
|
186 |
+
out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord)
|
187 |
+
|
188 |
+
if self.two_stage:
|
189 |
+
enc_outputs_coord = enc_outputs_coord_unact.sigmoid()
|
190 |
+
out['enc_outputs'] = {
|
191 |
+
'pred_logits': enc_outputs_class,
|
192 |
+
'pred_boxes': enc_outputs_coord,
|
193 |
+
'anchors': anchors,
|
194 |
+
}
|
195 |
+
return out
|
196 |
+
|
197 |
+
@torch.jit.unused
|
198 |
+
def _set_aux_loss(self, outputs_class, outputs_coord):
|
199 |
+
# this is a workaround to make torchscript happy, as torchscript
|
200 |
+
# doesn't support dictionary with non-homogeneous values, such
|
201 |
+
# as a dict having both a Tensor and a list.
|
202 |
+
return [{'pred_logits': a, 'pred_boxes': b}
|
203 |
+
for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
|
204 |
+
|
205 |
+
|
206 |
+
class SetCriterion(nn.Module):
|
207 |
+
""" This class computes the loss for DETR.
|
208 |
+
The process happens in two steps:
|
209 |
+
1) we compute hungarian assignment between ground truth boxes and the outputs of the model
|
210 |
+
2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
|
211 |
+
"""
|
212 |
+
def __init__(self, num_classes, matcher, weight_dict, losses, focal_alpha=0.25,
|
213 |
+
num_queries=300, assign_first_stage=False, assign_second_stage=False):
|
214 |
+
""" Create the criterion.
|
215 |
+
Parameters:
|
216 |
+
num_classes: number of object categories, omitting the special no-object category
|
217 |
+
matcher: module able to compute a matching between targets and proposals
|
218 |
+
weight_dict: dict containing as key the names of the losses and as values their relative weight.
|
219 |
+
losses: list of all the losses to be applied. See get_loss for list of available losses.
|
220 |
+
focal_alpha: alpha in Focal Loss
|
221 |
+
"""
|
222 |
+
super().__init__()
|
223 |
+
self.num_classes = num_classes
|
224 |
+
self.matcher = matcher
|
225 |
+
self.weight_dict = weight_dict
|
226 |
+
self.losses = losses
|
227 |
+
self.focal_alpha = focal_alpha
|
228 |
+
self.assign_first_stage = assign_first_stage
|
229 |
+
self.assign_second_stage = assign_second_stage
|
230 |
+
|
231 |
+
if self.assign_first_stage:
|
232 |
+
self.stg1_assigner = Stage1Assigner()
|
233 |
+
if self.assign_second_stage:
|
234 |
+
self.stg2_assigner = Stage2Assigner(num_queries)
|
235 |
+
|
236 |
+
def loss_labels(self, outputs, targets, indices, num_boxes, log=True):
|
237 |
+
"""Classification loss (NLL)
|
238 |
+
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
|
239 |
+
"""
|
240 |
+
assert 'pred_logits' in outputs
|
241 |
+
src_logits = outputs['pred_logits']
|
242 |
+
|
243 |
+
idx = self._get_src_permutation_idx(indices)
|
244 |
+
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
|
245 |
+
target_classes = torch.full(src_logits.shape[:2], self.num_classes,
|
246 |
+
dtype=torch.int64, device=src_logits.device)
|
247 |
+
target_classes[idx] = target_classes_o
|
248 |
+
|
249 |
+
target_classes_onehot = torch.zeros([src_logits.shape[0], src_logits.shape[1], src_logits.shape[2] + 1],
|
250 |
+
dtype=src_logits.dtype, layout=src_logits.layout, device=src_logits.device)
|
251 |
+
target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1)
|
252 |
+
|
253 |
+
target_classes_onehot = target_classes_onehot[:,:,:-1]
|
254 |
+
loss_ce = sigmoid_focal_loss(src_logits, target_classes_onehot, num_boxes, alpha=self.focal_alpha, gamma=2) * src_logits.shape[1]
|
255 |
+
losses = {'loss_ce': loss_ce}
|
256 |
+
|
257 |
+
if log:
|
258 |
+
# TODO this should probably be a separate loss, not hacked in this one here
|
259 |
+
losses['class_error'] = 100 - accuracy(src_logits[idx], target_classes_o)[0]
|
260 |
+
return losses
|
261 |
+
|
262 |
+
@torch.no_grad()
|
263 |
+
def loss_cardinality(self, outputs, targets, indices, num_boxes):
|
264 |
+
""" Compute the cardinality error, ie the absolute error in the number of predicted non-empty boxes
|
265 |
+
This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients
|
266 |
+
"""
|
267 |
+
pred_logits = outputs['pred_logits']
|
268 |
+
device = pred_logits.device
|
269 |
+
tgt_lengths = torch.as_tensor([len(v["labels"]) for v in targets], device=device)
|
270 |
+
# Count the number of predictions that are NOT "no-object" (which is the last class)
|
271 |
+
card_pred = (pred_logits.argmax(-1) != pred_logits.shape[-1] - 1).sum(1)
|
272 |
+
card_err = F.l1_loss(card_pred.float(), tgt_lengths.float())
|
273 |
+
losses = {'cardinality_error': card_err}
|
274 |
+
return losses
|
275 |
+
|
276 |
+
def loss_boxes(self, outputs, targets, indices, num_boxes):
|
277 |
+
"""Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
|
278 |
+
targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
|
279 |
+
The target boxes are expected in format (center_x, center_y, h, w), normalized by the image size.
|
280 |
+
"""
|
281 |
+
assert 'pred_boxes' in outputs
|
282 |
+
idx = self._get_src_permutation_idx(indices)
|
283 |
+
src_boxes = outputs['pred_boxes'][idx]
|
284 |
+
target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0)
|
285 |
+
|
286 |
+
loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none')
|
287 |
+
|
288 |
+
losses = {}
|
289 |
+
losses['loss_bbox'] = loss_bbox.sum() / num_boxes
|
290 |
+
|
291 |
+
loss_giou = 1 - torch.diag(box_ops.generalized_box_iou(
|
292 |
+
box_ops.box_cxcywh_to_xyxy(src_boxes),
|
293 |
+
box_ops.box_cxcywh_to_xyxy(target_boxes)))
|
294 |
+
losses['loss_giou'] = loss_giou.sum() / num_boxes
|
295 |
+
return losses
|
296 |
+
|
297 |
+
def loss_masks(self, outputs, targets, indices, num_boxes):
|
298 |
+
"""Compute the losses related to the masks: the focal loss and the dice loss.
|
299 |
+
targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]
|
300 |
+
"""
|
301 |
+
assert "pred_masks" in outputs
|
302 |
+
|
303 |
+
src_idx = self._get_src_permutation_idx(indices)
|
304 |
+
tgt_idx = self._get_tgt_permutation_idx(indices)
|
305 |
+
|
306 |
+
src_masks = outputs["pred_masks"]
|
307 |
+
|
308 |
+
# TODO use valid to mask invalid areas due to padding in loss
|
309 |
+
target_masks, valid = nested_tensor_from_tensor_list([t["masks"] for t in targets]).decompose()
|
310 |
+
target_masks = target_masks.to(src_masks)
|
311 |
+
|
312 |
+
src_masks = src_masks[src_idx]
|
313 |
+
# upsample predictions to the target size
|
314 |
+
src_masks = interpolate(src_masks[:, None], size=target_masks.shape[-2:],
|
315 |
+
mode="bilinear", align_corners=False)
|
316 |
+
src_masks = src_masks[:, 0].flatten(1)
|
317 |
+
|
318 |
+
target_masks = target_masks[tgt_idx].flatten(1)
|
319 |
+
|
320 |
+
losses = {
|
321 |
+
"loss_mask": sigmoid_focal_loss(src_masks, target_masks, num_boxes),
|
322 |
+
"loss_dice": dice_loss(src_masks, target_masks, num_boxes),
|
323 |
+
}
|
324 |
+
return losses
|
325 |
+
|
326 |
+
def _get_src_permutation_idx(self, indices):
|
327 |
+
# permute predictions following indices
|
328 |
+
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
|
329 |
+
src_idx = torch.cat([src for (src, _) in indices])
|
330 |
+
return batch_idx, src_idx
|
331 |
+
|
332 |
+
def _get_tgt_permutation_idx(self, indices):
|
333 |
+
# permute targets following indices
|
334 |
+
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
|
335 |
+
tgt_idx = torch.cat([tgt for (_, tgt) in indices])
|
336 |
+
return batch_idx, tgt_idx
|
337 |
+
|
338 |
+
def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs):
|
339 |
+
loss_map = {
|
340 |
+
'labels': self.loss_labels,
|
341 |
+
'cardinality': self.loss_cardinality,
|
342 |
+
'boxes': self.loss_boxes,
|
343 |
+
'masks': self.loss_masks
|
344 |
+
}
|
345 |
+
assert loss in loss_map, f'do you really want to compute {loss} loss?'
|
346 |
+
return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs)
|
347 |
+
|
348 |
+
def forward(self, outputs, targets):
|
349 |
+
""" This performs the loss computation.
|
350 |
+
Parameters:
|
351 |
+
outputs: dict of tensors, see the output specification of the model for the format
|
352 |
+
targets: list of dicts, such that len(targets) == batch_size.
|
353 |
+
The expected keys in each dict depends on the losses applied, see each loss' doc
|
354 |
+
"""
|
355 |
+
outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs' and k != 'enc_outputs'}
|
356 |
+
|
357 |
+
# Retrieve the matching between the outputs of the last layer and the targets
|
358 |
+
if self.assign_second_stage:
|
359 |
+
indices = self.stg2_assigner(outputs_without_aux, targets)
|
360 |
+
else:
|
361 |
+
indices = self.matcher(outputs_without_aux, targets)
|
362 |
+
|
363 |
+
# Compute the average number of target boxes accross all nodes, for normalization purposes
|
364 |
+
num_boxes = sum(len(t["labels"]) for t in targets)
|
365 |
+
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
|
366 |
+
if is_dist_avail_and_initialized():
|
367 |
+
torch.distributed.all_reduce(num_boxes)
|
368 |
+
num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item()
|
369 |
+
|
370 |
+
# Compute all the requested losses
|
371 |
+
losses = {}
|
372 |
+
for loss in self.losses:
|
373 |
+
kwargs = {}
|
374 |
+
losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes, **kwargs))
|
375 |
+
|
376 |
+
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
|
377 |
+
if 'aux_outputs' in outputs:
|
378 |
+
for i, aux_outputs in enumerate(outputs['aux_outputs']):
|
379 |
+
if not self.assign_second_stage:
|
380 |
+
indices = self.matcher(aux_outputs, targets)
|
381 |
+
for loss in self.losses:
|
382 |
+
if loss == 'masks':
|
383 |
+
# Intermediate masks losses are too costly to compute, we ignore them.
|
384 |
+
continue
|
385 |
+
kwargs = {}
|
386 |
+
if loss == 'labels':
|
387 |
+
# Logging is enabled only for the last layer
|
388 |
+
kwargs['log'] = False
|
389 |
+
l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs)
|
390 |
+
l_dict = {k + f'_{i}': v for k, v in l_dict.items()}
|
391 |
+
losses.update(l_dict)
|
392 |
+
|
393 |
+
if 'enc_outputs' in outputs:
|
394 |
+
enc_outputs = outputs['enc_outputs']
|
395 |
+
bin_targets = copy.deepcopy(targets)
|
396 |
+
for bt in bin_targets:
|
397 |
+
bt['labels'] = torch.zeros_like(bt['labels'])
|
398 |
+
if self.assign_first_stage:
|
399 |
+
indices = self.stg1_assigner(enc_outputs, bin_targets)
|
400 |
+
else:
|
401 |
+
indices = self.matcher(enc_outputs, bin_targets)
|
402 |
+
for loss in self.losses:
|
403 |
+
if loss == 'masks':
|
404 |
+
# Intermediate masks losses are too costly to compute, we ignore them.
|
405 |
+
continue
|
406 |
+
kwargs = {}
|
407 |
+
if loss == 'labels':
|
408 |
+
# Logging is enabled only for the last layer
|
409 |
+
kwargs['log'] = False
|
410 |
+
l_dict = self.get_loss(loss, enc_outputs, bin_targets, indices, num_boxes, **kwargs)
|
411 |
+
l_dict = {k + f'_enc': v for k, v in l_dict.items()}
|
412 |
+
losses.update(l_dict)
|
413 |
+
|
414 |
+
return losses
|
415 |
+
|
416 |
+
|
417 |
+
class PostProcess(nn.Module):
|
418 |
+
""" This module converts the model's output into the format expected by the coco api"""
|
419 |
+
|
420 |
+
@torch.no_grad()
|
421 |
+
def forward(self, outputs, target_sizes):
|
422 |
+
""" Perform the computation
|
423 |
+
Parameters:
|
424 |
+
outputs: raw outputs of the model
|
425 |
+
target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch
|
426 |
+
For evaluation, this must be the original image size (before any data augmentation)
|
427 |
+
For visualization, this should be the image size after data augment, but before padding
|
428 |
+
"""
|
429 |
+
out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes']
|
430 |
+
|
431 |
+
assert len(out_logits) == len(target_sizes)
|
432 |
+
assert target_sizes.shape[1] == 2
|
433 |
+
|
434 |
+
prob = out_logits.sigmoid()
|
435 |
+
topk_values, topk_indexes = torch.topk(prob.view(out_logits.shape[0], -1), 100, dim=1)
|
436 |
+
scores = topk_values
|
437 |
+
# topk_boxes = topk_indexes // out_logits.shape[2]
|
438 |
+
topk_boxes = torch.div(topk_indexes, out_logits.shape[2], rounding_mode='floor')
|
439 |
+
labels = topk_indexes % out_logits.shape[2]
|
440 |
+
boxes = box_ops.box_cxcywh_to_xyxy(out_bbox)
|
441 |
+
boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1,1,4))
|
442 |
+
|
443 |
+
# and from relative [0, 1] to absolute [0, height] coordinates
|
444 |
+
img_h, img_w = target_sizes.unbind(1)
|
445 |
+
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
|
446 |
+
boxes = boxes * scale_fct[:, None, :]
|
447 |
+
|
448 |
+
results = [{'scores': s, 'labels': l, 'boxes': b} for s, l, b in zip(scores, labels, boxes)]
|
449 |
+
|
450 |
+
return results
|
451 |
+
|
452 |
+
class NMSPostProcess(nn.Module):
|
453 |
+
""" This module converts the model's output into the format expected by the coco api"""
|
454 |
+
|
455 |
+
@torch.no_grad()
|
456 |
+
def forward(self, outputs, target_sizes):
|
457 |
+
""" Perform the computation
|
458 |
+
Parameters:
|
459 |
+
outputs: raw outputs of the model
|
460 |
+
target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch
|
461 |
+
For evaluation, this must be the original image size (before any data augmentation)
|
462 |
+
For visualization, this should be the image size after data augment, but before padding
|
463 |
+
"""
|
464 |
+
out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes']
|
465 |
+
bs, n_queries, n_cls = out_logits.shape
|
466 |
+
|
467 |
+
assert len(out_logits) == len(target_sizes)
|
468 |
+
assert target_sizes.shape[1] == 2
|
469 |
+
|
470 |
+
prob = out_logits.sigmoid()
|
471 |
+
|
472 |
+
all_scores = prob.view(bs, n_queries * n_cls).to(out_logits.device)
|
473 |
+
all_indexes = torch.arange(n_queries * n_cls)[None].repeat(bs, 1).to(out_logits.device)
|
474 |
+
all_boxes = all_indexes // out_logits.shape[2]
|
475 |
+
all_labels = all_indexes % out_logits.shape[2]
|
476 |
+
|
477 |
+
boxes = box_ops.box_cxcywh_to_xyxy(out_bbox)
|
478 |
+
boxes = torch.gather(boxes, 1, all_boxes.unsqueeze(-1).repeat(1,1,4))
|
479 |
+
|
480 |
+
# and from relative [0, 1] to absolute [0, height] coordinates
|
481 |
+
img_h, img_w = target_sizes.unbind(1)
|
482 |
+
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
|
483 |
+
boxes = boxes * scale_fct[:, None, :]
|
484 |
+
|
485 |
+
results = []
|
486 |
+
for b in range(bs):
|
487 |
+
box = boxes[b]
|
488 |
+
score = all_scores[b]
|
489 |
+
lbls = all_labels[b]
|
490 |
+
|
491 |
+
topk = min(len(score), 10000)
|
492 |
+
pre_topk = score.topk(topk).indices
|
493 |
+
box = box[pre_topk]
|
494 |
+
score = score[pre_topk]
|
495 |
+
lbls = lbls[pre_topk]
|
496 |
+
|
497 |
+
keep_inds = batched_nms(box, score, lbls, 0.7)[:100]
|
498 |
+
results.append({
|
499 |
+
'scores': score[keep_inds],
|
500 |
+
'labels': lbls[keep_inds],
|
501 |
+
'boxes': box[keep_inds],
|
502 |
+
})
|
503 |
+
|
504 |
+
return results
|
505 |
+
|
506 |
+
|
507 |
+
|
508 |
+
class MLP(nn.Module):
|
509 |
+
""" Very simple multi-layer perceptron (also called FFN)"""
|
510 |
+
|
511 |
+
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
512 |
+
super().__init__()
|
513 |
+
self.num_layers = num_layers
|
514 |
+
h = [hidden_dim] * (num_layers - 1)
|
515 |
+
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
516 |
+
|
517 |
+
def forward(self, x):
|
518 |
+
for i, layer in enumerate(self.layers):
|
519 |
+
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
520 |
+
return x
|
521 |
+
|
522 |
+
|
523 |
+
def build(args):
|
524 |
+
if args.dataset_file == 'coco':
|
525 |
+
num_classes = 91
|
526 |
+
elif args.dataset_file in ['refcoco', 'refcoco+', 'refcocog']:
|
527 |
+
num_classes = 91
|
528 |
+
elif args.dataset_file == "coco_panoptic":
|
529 |
+
num_classes = 250
|
530 |
+
else:
|
531 |
+
num_classes = 20
|
532 |
+
device = torch.device(args.device)
|
533 |
+
|
534 |
+
backbone = build_backbone(args)
|
535 |
+
|
536 |
+
transformer = build_deforamble_transformer(args)
|
537 |
+
model = DeformableDETR(
|
538 |
+
backbone,
|
539 |
+
transformer,
|
540 |
+
num_classes=num_classes,
|
541 |
+
num_queries=args.num_queries,
|
542 |
+
num_feature_levels=args.num_feature_levels,
|
543 |
+
aux_loss=args.aux_loss,
|
544 |
+
with_box_refine=args.with_box_refine,
|
545 |
+
two_stage=args.two_stage,
|
546 |
+
)
|
547 |
+
if args.masks:
|
548 |
+
model = DETRsegm(model, freeze_detr=(args.frozen_weights is not None))
|
549 |
+
matcher = build_matcher(args)
|
550 |
+
weight_dict = {'loss_ce': args.cls_loss_coef, 'loss_bbox': args.bbox_loss_coef}
|
551 |
+
weight_dict['loss_giou'] = args.giou_loss_coef
|
552 |
+
if args.masks:
|
553 |
+
weight_dict["loss_mask"] = args.mask_loss_coef
|
554 |
+
weight_dict["loss_dice"] = args.dice_loss_coef
|
555 |
+
# TODO this is a hack
|
556 |
+
if args.aux_loss:
|
557 |
+
aux_weight_dict = {}
|
558 |
+
for i in range(args.dec_layers - 1):
|
559 |
+
aux_weight_dict.update({k + f'_{i}': v for k, v in weight_dict.items()})
|
560 |
+
aux_weight_dict.update({k + f'_enc': v for k, v in weight_dict.items()})
|
561 |
+
weight_dict.update(aux_weight_dict)
|
562 |
+
|
563 |
+
losses = ['labels', 'boxes', 'cardinality']
|
564 |
+
if args.masks:
|
565 |
+
losses += ["masks"]
|
566 |
+
# num_classes, matcher, weight_dict, losses, focal_alpha=0.25
|
567 |
+
criterion = SetCriterion(num_classes, matcher, weight_dict, losses, focal_alpha=args.focal_alpha,
|
568 |
+
num_queries = args.num_queries,
|
569 |
+
assign_first_stage=args.assign_first_stage,
|
570 |
+
assign_second_stage=args.assign_second_stage)
|
571 |
+
criterion.to(device)
|
572 |
+
if args.assign_second_stage:
|
573 |
+
postprocessors = {'bbox': NMSPostProcess()}
|
574 |
+
else:
|
575 |
+
postprocessors = {'bbox': PostProcess()}
|
576 |
+
if args.masks:
|
577 |
+
postprocessors['segm'] = PostProcessSegm()
|
578 |
+
if args.dataset_file == "coco_panoptic":
|
579 |
+
is_thing_map = {i: i <= 90 for i in range(201)}
|
580 |
+
postprocessors["panoptic"] = PostProcessPanoptic(is_thing_map, threshold=0.85)
|
581 |
+
|
582 |
+
return model, criterion, postprocessors
|
models/deformable_detr/deformable_transformer.py
ADDED
@@ -0,0 +1,462 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Deformable DETR
|
3 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------
|
6 |
+
# Modified from DETR (https://github.com/facebookresearch/detr)
|
7 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
8 |
+
# ------------------------------------------------------------------------
|
9 |
+
|
10 |
+
import copy
|
11 |
+
import math
|
12 |
+
from typing import List, Optional
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.nn.functional as F
|
16 |
+
from torch import Tensor, nn
|
17 |
+
from torch.nn.init import constant_, normal_, uniform_, xavier_uniform_
|
18 |
+
from torchvision.ops.boxes import batched_nms
|
19 |
+
|
20 |
+
# from models.ops.modules import MSDeformAttn
|
21 |
+
from .ms_deform_attn import MultiScaleDeformableAttention as MSDeformAttn
|
22 |
+
from util.box_ops import box_cxcywh_to_xyxy
|
23 |
+
from util.misc import inverse_sigmoid
|
24 |
+
|
25 |
+
|
26 |
+
class DeformableTransformer(nn.Module):
|
27 |
+
def __init__(self, d_model=256, nhead=8,
|
28 |
+
num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=1024, dropout=0.1,
|
29 |
+
activation="relu", return_intermediate_dec=False,
|
30 |
+
num_feature_levels=4, dec_n_points=4, enc_n_points=4,
|
31 |
+
two_stage=False, two_stage_num_proposals=300,
|
32 |
+
assign_first_stage=False):
|
33 |
+
super().__init__()
|
34 |
+
|
35 |
+
self.d_model = d_model
|
36 |
+
self.nhead = nhead
|
37 |
+
self.two_stage = two_stage
|
38 |
+
self.two_stage_num_proposals = two_stage_num_proposals
|
39 |
+
self.assign_first_stage = assign_first_stage
|
40 |
+
|
41 |
+
encoder_layer = DeformableTransformerEncoderLayer(d_model, dim_feedforward,
|
42 |
+
dropout, activation,
|
43 |
+
num_feature_levels, nhead, enc_n_points)
|
44 |
+
self.encoder = DeformableTransformerEncoder(encoder_layer, num_encoder_layers)
|
45 |
+
|
46 |
+
decoder_layer = DeformableTransformerDecoderLayer(d_model, dim_feedforward,
|
47 |
+
dropout, activation,
|
48 |
+
num_feature_levels, nhead, dec_n_points)
|
49 |
+
self.decoder = DeformableTransformerDecoder(decoder_layer, num_decoder_layers, return_intermediate_dec)
|
50 |
+
|
51 |
+
self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model))
|
52 |
+
|
53 |
+
if two_stage:
|
54 |
+
self.enc_output = nn.Linear(d_model, d_model)
|
55 |
+
self.enc_output_norm = nn.LayerNorm(d_model)
|
56 |
+
self.pos_trans = nn.Linear(d_model * 2, d_model * 2)
|
57 |
+
self.pos_trans_norm = nn.LayerNorm(d_model * 2)
|
58 |
+
self.pix_trans = nn.Linear(d_model, d_model)
|
59 |
+
self.pix_trans_norm = nn.LayerNorm(d_model)
|
60 |
+
else:
|
61 |
+
self.reference_points = nn.Linear(d_model, 2)
|
62 |
+
|
63 |
+
self._reset_parameters()
|
64 |
+
|
65 |
+
def _reset_parameters(self):
|
66 |
+
for p in self.parameters():
|
67 |
+
if p.dim() > 1:
|
68 |
+
nn.init.xavier_uniform_(p)
|
69 |
+
for m in self.modules():
|
70 |
+
if isinstance(m, MSDeformAttn):
|
71 |
+
m._reset_parameters()
|
72 |
+
if not self.two_stage:
|
73 |
+
xavier_uniform_(self.reference_points.weight.data, gain=1.0)
|
74 |
+
constant_(self.reference_points.bias.data, 0.)
|
75 |
+
normal_(self.level_embed)
|
76 |
+
|
77 |
+
def get_proposal_pos_embed(self, proposals):
|
78 |
+
num_pos_feats = 128
|
79 |
+
temperature = 10000
|
80 |
+
scale = 2 * math.pi
|
81 |
+
|
82 |
+
dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=proposals.device)
|
83 |
+
dim_t = torch.div(dim_t, 2, rounding_mode='floor')
|
84 |
+
dim_t = temperature ** (2 * dim_t / num_pos_feats)
|
85 |
+
# N, L, 4
|
86 |
+
proposals = proposals.sigmoid() * scale
|
87 |
+
# N, L, 4, 128
|
88 |
+
pos = proposals[:, :, :, None] / dim_t
|
89 |
+
# N, L, 4, 64, 2
|
90 |
+
pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()), dim=4).flatten(2)
|
91 |
+
return pos
|
92 |
+
|
93 |
+
def gen_encoder_output_proposals(self, memory, memory_padding_mask, spatial_shapes):
|
94 |
+
N_, S_, C_ = memory.shape
|
95 |
+
base_scale = 4.0
|
96 |
+
proposals = []
|
97 |
+
_cur = 0
|
98 |
+
level_ids = []
|
99 |
+
for lvl, (H_, W_) in enumerate(spatial_shapes):
|
100 |
+
mask_flatten_ = memory_padding_mask[:, _cur:(_cur + H_ * W_)].view(N_, H_, W_, 1)
|
101 |
+
valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
|
102 |
+
valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1)
|
103 |
+
|
104 |
+
grid_y, grid_x = torch.meshgrid(torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device),
|
105 |
+
torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device))
|
106 |
+
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)
|
107 |
+
|
108 |
+
scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N_, 1, 1, 2)
|
109 |
+
grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale
|
110 |
+
wh = torch.ones_like(grid) * 0.05 * (2.0 ** lvl)
|
111 |
+
proposal = torch.cat((grid, wh), -1).view(N_, -1, 4)
|
112 |
+
proposals.append(proposal)
|
113 |
+
_cur += (H_ * W_)
|
114 |
+
level_ids.append(grid.new_ones(H_ * W_, dtype=torch.long) * lvl)
|
115 |
+
output_proposals = torch.cat(proposals, 1)
|
116 |
+
output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True)
|
117 |
+
output_proposals = torch.log(output_proposals / (1 - output_proposals))
|
118 |
+
output_proposals = output_proposals.masked_fill(memory_padding_mask.unsqueeze(-1), float('inf'))
|
119 |
+
output_proposals = output_proposals.masked_fill(~output_proposals_valid, float('inf'))
|
120 |
+
|
121 |
+
output_memory = memory
|
122 |
+
output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0))
|
123 |
+
output_memory = output_memory.masked_fill(~output_proposals_valid, float(0))
|
124 |
+
output_memory = self.enc_output_norm(self.enc_output(output_memory))
|
125 |
+
level_ids = torch.cat(level_ids)
|
126 |
+
return output_memory, output_proposals, level_ids
|
127 |
+
|
128 |
+
def get_valid_ratio(self, mask):
|
129 |
+
_, H, W = mask.shape
|
130 |
+
valid_H = torch.sum(~mask[:, :, 0], 1)
|
131 |
+
valid_W = torch.sum(~mask[:, 0, :], 1)
|
132 |
+
valid_ratio_h = valid_H.float() / H
|
133 |
+
valid_ratio_w = valid_W.float() / W
|
134 |
+
valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
|
135 |
+
return valid_ratio
|
136 |
+
|
137 |
+
def forward(self, srcs, masks, pos_embeds, query_embed=None):
|
138 |
+
assert self.two_stage or query_embed is not None
|
139 |
+
|
140 |
+
# prepare input for encoder
|
141 |
+
src_flatten = []
|
142 |
+
mask_flatten = []
|
143 |
+
lvl_pos_embed_flatten = []
|
144 |
+
spatial_shapes = []
|
145 |
+
for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
|
146 |
+
bs, c, h, w = src.shape
|
147 |
+
spatial_shape = (h, w)
|
148 |
+
spatial_shapes.append(spatial_shape)
|
149 |
+
src = src.flatten(2).transpose(1, 2)
|
150 |
+
mask = mask.flatten(1)
|
151 |
+
pos_embed = pos_embed.flatten(2).transpose(1, 2)
|
152 |
+
lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
|
153 |
+
lvl_pos_embed_flatten.append(lvl_pos_embed)
|
154 |
+
src_flatten.append(src)
|
155 |
+
mask_flatten.append(mask)
|
156 |
+
src_flatten = torch.cat(src_flatten, 1)
|
157 |
+
mask_flatten = torch.cat(mask_flatten, 1)
|
158 |
+
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
|
159 |
+
spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device)
|
160 |
+
level_start_index = torch.cat((spatial_shapes.new_zeros((1, )), spatial_shapes.prod(1).cumsum(0)[:-1]))
|
161 |
+
valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)
|
162 |
+
|
163 |
+
# encoder
|
164 |
+
memory = self.encoder(src_flatten, spatial_shapes, level_start_index, valid_ratios, lvl_pos_embed_flatten, mask_flatten)
|
165 |
+
|
166 |
+
# prepare input for decoder
|
167 |
+
bs, _, c = memory.shape
|
168 |
+
if self.two_stage:
|
169 |
+
output_memory, output_proposals, level_ids = self.gen_encoder_output_proposals(memory, mask_flatten, spatial_shapes)
|
170 |
+
|
171 |
+
# hack implementation for two-stage Deformable DETR
|
172 |
+
enc_outputs_class = self.decoder.class_embed[self.decoder.num_layers](output_memory)
|
173 |
+
enc_outputs_coord_unact = self.decoder.bbox_embed[self.decoder.num_layers](output_memory) + output_proposals
|
174 |
+
|
175 |
+
topk = self.two_stage_num_proposals
|
176 |
+
proposal_logit = enc_outputs_class[..., 0]
|
177 |
+
|
178 |
+
if self.assign_first_stage:
|
179 |
+
proposal_boxes = box_cxcywh_to_xyxy(enc_outputs_coord_unact.sigmoid().float()).clamp(0, 1)
|
180 |
+
topk_proposals = []
|
181 |
+
for b in range(bs):
|
182 |
+
prop_boxes_b = proposal_boxes[b]
|
183 |
+
prop_logits_b = proposal_logit[b]
|
184 |
+
|
185 |
+
# pre-nms per-level topk
|
186 |
+
pre_nms_topk = 1000
|
187 |
+
pre_nms_inds = []
|
188 |
+
for lvl in range(len(spatial_shapes)):
|
189 |
+
lvl_mask = level_ids == lvl
|
190 |
+
pre_nms_inds.append(torch.topk(prop_logits_b.sigmoid() * lvl_mask, pre_nms_topk)[1])
|
191 |
+
pre_nms_inds = torch.cat(pre_nms_inds)
|
192 |
+
|
193 |
+
# nms on topk indices
|
194 |
+
post_nms_inds = batched_nms(prop_boxes_b[pre_nms_inds], prop_logits_b[pre_nms_inds], level_ids[pre_nms_inds], 0.9)
|
195 |
+
keep_inds = pre_nms_inds[post_nms_inds]
|
196 |
+
|
197 |
+
if len(keep_inds) < self.two_stage_num_proposals:
|
198 |
+
print(f'[WARNING] nms proposals ({len(keep_inds)}) < {self.two_stage_num_proposals}, running naive topk')
|
199 |
+
keep_inds = torch.topk(proposal_logit[b], topk)[1]
|
200 |
+
|
201 |
+
# keep top Q/L indices for L levels
|
202 |
+
q_per_l = topk // len(spatial_shapes)
|
203 |
+
is_level_ordered = level_ids[keep_inds][None] == torch.arange(len(spatial_shapes), device=level_ids.device)[:,None] # LS
|
204 |
+
keep_inds_mask = is_level_ordered & (is_level_ordered.cumsum(1) <= q_per_l) # LS
|
205 |
+
keep_inds_mask = keep_inds_mask.any(0) # S
|
206 |
+
|
207 |
+
# pad to Q indices (might let ones filtered from pre-nms sneak by... unlikely because we pick high conf anyways)
|
208 |
+
if keep_inds_mask.sum() < topk:
|
209 |
+
num_to_add = topk - keep_inds_mask.sum()
|
210 |
+
pad_inds = (~keep_inds_mask).nonzero()[:num_to_add]
|
211 |
+
keep_inds_mask[pad_inds] = True
|
212 |
+
|
213 |
+
# index
|
214 |
+
keep_inds_topk = keep_inds[keep_inds_mask]
|
215 |
+
topk_proposals.append(keep_inds_topk)
|
216 |
+
topk_proposals = torch.stack(topk_proposals)
|
217 |
+
else:
|
218 |
+
topk_proposals = torch.topk(proposal_logit, topk, dim=1)[1]
|
219 |
+
|
220 |
+
topk_coords_unact = torch.gather(enc_outputs_coord_unact, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4))
|
221 |
+
topk_coords_unact = topk_coords_unact.detach()
|
222 |
+
reference_points = topk_coords_unact.sigmoid()
|
223 |
+
init_reference_out = reference_points
|
224 |
+
pos_trans_out = self.pos_trans_norm(self.pos_trans(self.get_proposal_pos_embed(topk_coords_unact)))
|
225 |
+
query_embed, tgt = torch.split(pos_trans_out, c, dim=2)
|
226 |
+
|
227 |
+
topk_feats = torch.stack([output_memory[b][topk_proposals[b]] for b in range(bs)]).detach()
|
228 |
+
tgt = tgt + self.pix_trans_norm(self.pix_trans(topk_feats))
|
229 |
+
else:
|
230 |
+
query_embed, tgt = torch.split(query_embed, c, dim=1)
|
231 |
+
query_embed = query_embed.unsqueeze(0).expand(bs, -1, -1)
|
232 |
+
tgt = tgt.unsqueeze(0).expand(bs, -1, -1)
|
233 |
+
reference_points = self.reference_points(query_embed).sigmoid()
|
234 |
+
init_reference_out = reference_points
|
235 |
+
|
236 |
+
# decoder
|
237 |
+
hs, inter_references = self.decoder(tgt, reference_points, memory,
|
238 |
+
spatial_shapes, level_start_index, valid_ratios, query_embed, mask_flatten)
|
239 |
+
|
240 |
+
inter_references_out = inter_references
|
241 |
+
if self.two_stage:
|
242 |
+
return hs, init_reference_out, inter_references_out, enc_outputs_class, enc_outputs_coord_unact, output_proposals.sigmoid()
|
243 |
+
return hs, init_reference_out, inter_references_out, None, None, None
|
244 |
+
|
245 |
+
|
246 |
+
class DeformableTransformerEncoderLayer(nn.Module):
|
247 |
+
def __init__(self,
|
248 |
+
d_model=256, d_ffn=1024,
|
249 |
+
dropout=0.1, activation="relu",
|
250 |
+
n_levels=4, n_heads=8, n_points=4):
|
251 |
+
super().__init__()
|
252 |
+
|
253 |
+
# self attention
|
254 |
+
self.self_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points, batch_first=True)
|
255 |
+
self.dropout1 = nn.Dropout(dropout)
|
256 |
+
self.norm1 = nn.LayerNorm(d_model)
|
257 |
+
|
258 |
+
# ffn
|
259 |
+
self.linear1 = nn.Linear(d_model, d_ffn)
|
260 |
+
self.activation = _get_activation_fn(activation)
|
261 |
+
self.dropout2 = nn.Dropout(dropout)
|
262 |
+
self.linear2 = nn.Linear(d_ffn, d_model)
|
263 |
+
self.dropout3 = nn.Dropout(dropout)
|
264 |
+
self.norm2 = nn.LayerNorm(d_model)
|
265 |
+
|
266 |
+
@staticmethod
|
267 |
+
def with_pos_embed(tensor, pos):
|
268 |
+
return tensor if pos is None else tensor + pos
|
269 |
+
|
270 |
+
def forward_ffn(self, src):
|
271 |
+
src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
|
272 |
+
src = src + self.dropout3(src2)
|
273 |
+
src = self.norm2(src)
|
274 |
+
return src
|
275 |
+
|
276 |
+
def forward(self, src, pos, reference_points, spatial_shapes, level_start_index, padding_mask=None):
|
277 |
+
# self attention
|
278 |
+
src2 = self.self_attn(
|
279 |
+
query=self.with_pos_embed(src, pos),
|
280 |
+
reference_points=reference_points,
|
281 |
+
value=src,
|
282 |
+
spatial_shapes=spatial_shapes,
|
283 |
+
level_start_index=level_start_index,
|
284 |
+
key_padding_mask=padding_mask,
|
285 |
+
)
|
286 |
+
src = src + self.dropout1(src2)
|
287 |
+
src = self.norm1(src)
|
288 |
+
|
289 |
+
# ffn
|
290 |
+
src = self.forward_ffn(src)
|
291 |
+
|
292 |
+
return src
|
293 |
+
|
294 |
+
|
295 |
+
class DeformableTransformerEncoder(nn.Module):
|
296 |
+
def __init__(self, encoder_layer, num_layers):
|
297 |
+
super().__init__()
|
298 |
+
self.layers = _get_clones(encoder_layer, num_layers)
|
299 |
+
self.num_layers = num_layers
|
300 |
+
|
301 |
+
@staticmethod
|
302 |
+
def get_reference_points(spatial_shapes, valid_ratios, device):
|
303 |
+
reference_points_list = []
|
304 |
+
for lvl, (H_, W_) in enumerate(spatial_shapes):
|
305 |
+
|
306 |
+
ref_y, ref_x = torch.meshgrid(torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),
|
307 |
+
torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device))
|
308 |
+
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_)
|
309 |
+
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_)
|
310 |
+
ref = torch.stack((ref_x, ref_y), -1)
|
311 |
+
reference_points_list.append(ref)
|
312 |
+
reference_points = torch.cat(reference_points_list, 1)
|
313 |
+
reference_points = reference_points[:, :, None] * valid_ratios[:, None]
|
314 |
+
return reference_points
|
315 |
+
|
316 |
+
def forward(self, src, spatial_shapes, level_start_index, valid_ratios, pos=None, padding_mask=None):
|
317 |
+
output = src
|
318 |
+
reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=src.device)
|
319 |
+
for _, layer in enumerate(self.layers):
|
320 |
+
output = layer(output, pos, reference_points, spatial_shapes, level_start_index, padding_mask)
|
321 |
+
|
322 |
+
return output
|
323 |
+
|
324 |
+
|
325 |
+
class DeformableTransformerDecoderLayer(nn.Module):
|
326 |
+
def __init__(self, d_model=256, d_ffn=1024,
|
327 |
+
dropout=0.1, activation="relu",
|
328 |
+
n_levels=4, n_heads=8, n_points=4):
|
329 |
+
super().__init__()
|
330 |
+
|
331 |
+
# cross attention
|
332 |
+
self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points, batch_first=True)
|
333 |
+
self.dropout1 = nn.Dropout(dropout)
|
334 |
+
self.norm1 = nn.LayerNorm(d_model)
|
335 |
+
|
336 |
+
# self attention
|
337 |
+
self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
|
338 |
+
self.dropout2 = nn.Dropout(dropout)
|
339 |
+
self.norm2 = nn.LayerNorm(d_model)
|
340 |
+
|
341 |
+
# ffn
|
342 |
+
self.linear1 = nn.Linear(d_model, d_ffn)
|
343 |
+
self.activation = _get_activation_fn(activation)
|
344 |
+
self.dropout3 = nn.Dropout(dropout)
|
345 |
+
self.linear2 = nn.Linear(d_ffn, d_model)
|
346 |
+
self.dropout4 = nn.Dropout(dropout)
|
347 |
+
self.norm3 = nn.LayerNorm(d_model)
|
348 |
+
|
349 |
+
@staticmethod
|
350 |
+
def with_pos_embed(tensor, pos):
|
351 |
+
return tensor if pos is None else tensor + pos
|
352 |
+
|
353 |
+
def forward_ffn(self, tgt):
|
354 |
+
tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
|
355 |
+
tgt = tgt + self.dropout4(tgt2)
|
356 |
+
tgt = self.norm3(tgt)
|
357 |
+
return tgt
|
358 |
+
|
359 |
+
def forward(self, tgt, query_pos, reference_points, src, src_spatial_shapes, level_start_index,
|
360 |
+
src_padding_mask=None, tgt_mask=None):
|
361 |
+
# self attention
|
362 |
+
q = k = self.with_pos_embed(tgt, query_pos)
|
363 |
+
tgt2 = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), tgt.transpose(0, 1), attn_mask=tgt_mask)[0].transpose(0, 1)
|
364 |
+
tgt = tgt + self.dropout2(tgt2)
|
365 |
+
tgt = self.norm2(tgt)
|
366 |
+
|
367 |
+
# cross attention
|
368 |
+
tgt2 = self.cross_attn(self.with_pos_embed(tgt, query_pos),
|
369 |
+
reference_points=reference_points,
|
370 |
+
value=src,
|
371 |
+
spatial_shapes=src_spatial_shapes,
|
372 |
+
level_start_index=level_start_index,
|
373 |
+
key_padding_mask=src_padding_mask)
|
374 |
+
tgt = tgt + self.dropout1(tgt2)
|
375 |
+
tgt = self.norm1(tgt)
|
376 |
+
|
377 |
+
# ffn
|
378 |
+
tgt = self.forward_ffn(tgt)
|
379 |
+
|
380 |
+
return tgt
|
381 |
+
|
382 |
+
|
383 |
+
class DeformableTransformerDecoder(nn.Module):
|
384 |
+
def __init__(self, decoder_layer, num_layers, return_intermediate=False):
|
385 |
+
super().__init__()
|
386 |
+
self.layers = _get_clones(decoder_layer, num_layers)
|
387 |
+
self.num_layers = num_layers
|
388 |
+
self.return_intermediate = return_intermediate
|
389 |
+
# hack implementation for iterative bounding box refinement and two-stage Deformable DETR
|
390 |
+
self.bbox_embed = None
|
391 |
+
self.class_embed = None
|
392 |
+
|
393 |
+
def forward(self, tgt, reference_points, src, src_spatial_shapes, src_level_start_index, src_valid_ratios,
|
394 |
+
query_pos=None, src_padding_mask=None, tgt_mask=None):
|
395 |
+
output = tgt
|
396 |
+
|
397 |
+
intermediate = []
|
398 |
+
intermediate_reference_points = []
|
399 |
+
for lid, layer in enumerate(self.layers):
|
400 |
+
if reference_points.shape[-1] == 4:
|
401 |
+
reference_points_input = reference_points[:, :, None] \
|
402 |
+
* torch.cat([src_valid_ratios, src_valid_ratios], -1)[:, None]
|
403 |
+
else:
|
404 |
+
assert reference_points.shape[-1] == 2
|
405 |
+
reference_points_input = reference_points[:, :, None] * src_valid_ratios[:, None]
|
406 |
+
output = layer(output, query_pos, reference_points_input, src, src_spatial_shapes, src_level_start_index, src_padding_mask, tgt_mask=tgt_mask)
|
407 |
+
|
408 |
+
# hack implementation for iterative bounding box refinement
|
409 |
+
if self.bbox_embed is not None:
|
410 |
+
tmp = self.bbox_embed[lid](output)
|
411 |
+
if reference_points.shape[-1] == 4:
|
412 |
+
new_reference_points = tmp + inverse_sigmoid(reference_points)
|
413 |
+
new_reference_points = new_reference_points.sigmoid()
|
414 |
+
else:
|
415 |
+
assert reference_points.shape[-1] == 2
|
416 |
+
new_reference_points = tmp
|
417 |
+
new_reference_points[..., :2] = tmp[..., :2] + inverse_sigmoid(reference_points)
|
418 |
+
new_reference_points = new_reference_points.sigmoid()
|
419 |
+
reference_points = new_reference_points.detach()
|
420 |
+
|
421 |
+
if self.return_intermediate:
|
422 |
+
intermediate.append(output)
|
423 |
+
intermediate_reference_points.append(reference_points)
|
424 |
+
|
425 |
+
if self.return_intermediate:
|
426 |
+
return torch.stack(intermediate), torch.stack(intermediate_reference_points)
|
427 |
+
|
428 |
+
return output, reference_points
|
429 |
+
|
430 |
+
|
431 |
+
def _get_clones(module, N):
|
432 |
+
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
433 |
+
|
434 |
+
|
435 |
+
def _get_activation_fn(activation):
|
436 |
+
"""Return an activation function given a string"""
|
437 |
+
if activation == "relu":
|
438 |
+
return F.relu
|
439 |
+
if activation == "gelu":
|
440 |
+
return F.gelu
|
441 |
+
if activation == "glu":
|
442 |
+
return F.glu
|
443 |
+
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
|
444 |
+
|
445 |
+
|
446 |
+
def build_deforamble_transformer(args):
|
447 |
+
return DeformableTransformer(
|
448 |
+
d_model=args.hidden_dim,
|
449 |
+
nhead=args.nheads,
|
450 |
+
num_encoder_layers=args.enc_layers,
|
451 |
+
num_decoder_layers=args.dec_layers,
|
452 |
+
dim_feedforward=args.dim_feedforward,
|
453 |
+
dropout=args.dropout,
|
454 |
+
activation="relu",
|
455 |
+
return_intermediate_dec=True,
|
456 |
+
num_feature_levels=args.num_feature_levels,
|
457 |
+
dec_n_points=args.dec_n_points,
|
458 |
+
enc_n_points=args.enc_n_points,
|
459 |
+
two_stage=args.two_stage,
|
460 |
+
two_stage_num_proposals=args.num_queries,
|
461 |
+
assign_first_stage=args.assign_first_stage,
|
462 |
+
)
|
models/deformable_detr/matcher.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Deformable DETR
|
3 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------
|
6 |
+
# Modified from DETR (https://github.com/facebookresearch/detr)
|
7 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
8 |
+
# ------------------------------------------------------------------------
|
9 |
+
|
10 |
+
"""
|
11 |
+
Modules to compute the matching cost and solve the corresponding LSAP.
|
12 |
+
"""
|
13 |
+
import torch
|
14 |
+
from scipy.optimize import linear_sum_assignment
|
15 |
+
from torch import nn
|
16 |
+
|
17 |
+
from util.box_ops import box_cxcywh_to_xyxy, generalized_box_iou
|
18 |
+
|
19 |
+
|
20 |
+
class HungarianMatcher(nn.Module):
|
21 |
+
"""This class computes an assignment between the targets and the predictions of the network
|
22 |
+
|
23 |
+
For efficiency reasons, the targets don't include the no_object. Because of this, in general,
|
24 |
+
there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions,
|
25 |
+
while the others are un-matched (and thus treated as non-objects).
|
26 |
+
"""
|
27 |
+
|
28 |
+
def __init__(self,
|
29 |
+
cost_class: float = 1,
|
30 |
+
cost_bbox: float = 1,
|
31 |
+
cost_giou: float = 1):
|
32 |
+
"""Creates the matcher
|
33 |
+
|
34 |
+
Params:
|
35 |
+
cost_class: This is the relative weight of the classification error in the matching cost
|
36 |
+
cost_bbox: This is the relative weight of the L1 error of the bounding box coordinates in the matching cost
|
37 |
+
cost_giou: This is the relative weight of the giou loss of the bounding box in the matching cost
|
38 |
+
"""
|
39 |
+
super().__init__()
|
40 |
+
self.cost_class = cost_class
|
41 |
+
self.cost_bbox = cost_bbox
|
42 |
+
self.cost_giou = cost_giou
|
43 |
+
assert cost_class != 0 or cost_bbox != 0 or cost_giou != 0, "all costs cant be 0"
|
44 |
+
|
45 |
+
def forward(self, outputs, targets):
|
46 |
+
""" Performs the matching
|
47 |
+
|
48 |
+
Params:
|
49 |
+
outputs: This is a dict that contains at least these entries:
|
50 |
+
"pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
|
51 |
+
"pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates
|
52 |
+
|
53 |
+
targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing:
|
54 |
+
"labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth
|
55 |
+
objects in the target) containing the class labels
|
56 |
+
"boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates
|
57 |
+
|
58 |
+
Returns:
|
59 |
+
A list of size batch_size, containing tuples of (index_i, index_j) where:
|
60 |
+
- index_i is the indices of the selected predictions (in order)
|
61 |
+
- index_j is the indices of the corresponding selected targets (in order)
|
62 |
+
For each batch element, it holds:
|
63 |
+
len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
|
64 |
+
"""
|
65 |
+
with torch.no_grad():
|
66 |
+
bs, num_queries = outputs["pred_logits"].shape[:2]
|
67 |
+
|
68 |
+
# We flatten to compute the cost matrices in a batch
|
69 |
+
out_prob = outputs["pred_logits"].flatten(0, 1).sigmoid()
|
70 |
+
out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4]
|
71 |
+
|
72 |
+
# Also concat the target labels and boxes
|
73 |
+
tgt_ids = torch.cat([v["labels"] for v in targets])
|
74 |
+
tgt_bbox = torch.cat([v["boxes"] for v in targets])
|
75 |
+
|
76 |
+
# Compute the classification cost.
|
77 |
+
alpha = 0.25
|
78 |
+
gamma = 2.0
|
79 |
+
neg_cost_class = (1 - alpha) * (out_prob ** gamma) * (-(1 - out_prob + 1e-8).log())
|
80 |
+
pos_cost_class = alpha * ((1 - out_prob) ** gamma) * (-(out_prob + 1e-8).log())
|
81 |
+
cost_class = pos_cost_class[:, tgt_ids] - neg_cost_class[:, tgt_ids]
|
82 |
+
|
83 |
+
# Compute the L1 cost between boxes
|
84 |
+
cost_bbox = torch.cdist(out_bbox, tgt_bbox, p=1)
|
85 |
+
|
86 |
+
# Compute the giou cost betwen boxes
|
87 |
+
cost_giou = -generalized_box_iou(box_cxcywh_to_xyxy(out_bbox),
|
88 |
+
box_cxcywh_to_xyxy(tgt_bbox))
|
89 |
+
|
90 |
+
# Final cost matrix
|
91 |
+
C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou
|
92 |
+
C = C.view(bs, num_queries, -1).cpu()
|
93 |
+
|
94 |
+
sizes = [len(v["boxes"]) for v in targets]
|
95 |
+
indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1))]
|
96 |
+
return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]
|
97 |
+
|
98 |
+
|
99 |
+
def build_matcher(args):
|
100 |
+
return HungarianMatcher(cost_class=args.set_cost_class, cost_bbox=args.set_cost_bbox,
|
101 |
+
cost_giou=args.set_cost_giou)
|
models/deformable_detr/ms_deform_attn.py
ADDED
@@ -0,0 +1,412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
# Deformable DETR
|
8 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
9 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
10 |
+
# ------------------------------------------------------------------------------------------------
|
11 |
+
# Modified from:
|
12 |
+
# https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/functions/ms_deform_attn_func.py
|
13 |
+
# https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py
|
14 |
+
# https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/multi_scale_deform_attn.py
|
15 |
+
# ------------------------------------------------------------------------------------------------
|
16 |
+
|
17 |
+
import math
|
18 |
+
import warnings
|
19 |
+
from typing import Optional
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn as nn
|
23 |
+
import torch.nn.functional as F
|
24 |
+
from torch.autograd import Function
|
25 |
+
from torch.autograd.function import once_differentiable
|
26 |
+
from torch.nn.init import constant_, xavier_uniform_
|
27 |
+
|
28 |
+
try:
|
29 |
+
from csrc import _C
|
30 |
+
except:
|
31 |
+
warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only!")
|
32 |
+
|
33 |
+
|
34 |
+
# helpers
|
35 |
+
def _is_power_of_2(n):
|
36 |
+
if (not isinstance(n, int)) or (n < 0):
|
37 |
+
raise ValueError("invalid input for _is_power_of_2: {} (type: {})".format(n, type(n)))
|
38 |
+
return (n & (n - 1) == 0) and n != 0
|
39 |
+
|
40 |
+
|
41 |
+
class MultiScaleDeformableAttnFunction(Function):
|
42 |
+
@staticmethod
|
43 |
+
def forward(
|
44 |
+
ctx,
|
45 |
+
value,
|
46 |
+
value_spatial_shapes,
|
47 |
+
value_level_start_index,
|
48 |
+
sampling_locations,
|
49 |
+
attention_weights,
|
50 |
+
im2col_step,
|
51 |
+
):
|
52 |
+
ctx.im2col_step = im2col_step
|
53 |
+
output = _C.ms_deform_attn_forward(
|
54 |
+
value,
|
55 |
+
value_spatial_shapes,
|
56 |
+
value_level_start_index,
|
57 |
+
sampling_locations,
|
58 |
+
attention_weights,
|
59 |
+
ctx.im2col_step,
|
60 |
+
)
|
61 |
+
ctx.save_for_backward(
|
62 |
+
value,
|
63 |
+
value_spatial_shapes,
|
64 |
+
value_level_start_index,
|
65 |
+
sampling_locations,
|
66 |
+
attention_weights,
|
67 |
+
)
|
68 |
+
return output
|
69 |
+
|
70 |
+
@staticmethod
|
71 |
+
@once_differentiable
|
72 |
+
def backward(ctx, grad_output):
|
73 |
+
(
|
74 |
+
value,
|
75 |
+
value_spatial_shapes,
|
76 |
+
value_level_start_index,
|
77 |
+
sampling_locations,
|
78 |
+
attention_weights,
|
79 |
+
) = ctx.saved_tensors
|
80 |
+
grad_value, grad_sampling_loc, grad_attn_weight = _C.ms_deform_attn_backward(
|
81 |
+
value,
|
82 |
+
value_spatial_shapes,
|
83 |
+
value_level_start_index,
|
84 |
+
sampling_locations,
|
85 |
+
attention_weights,
|
86 |
+
grad_output,
|
87 |
+
ctx.im2col_step,
|
88 |
+
)
|
89 |
+
|
90 |
+
return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None
|
91 |
+
|
92 |
+
|
93 |
+
def multi_scale_deformable_attn_pytorch(
|
94 |
+
value: torch.Tensor,
|
95 |
+
value_spatial_shapes: torch.Tensor,
|
96 |
+
sampling_locations: torch.Tensor,
|
97 |
+
attention_weights: torch.Tensor,
|
98 |
+
) -> torch.Tensor:
|
99 |
+
|
100 |
+
bs, _, num_heads, embed_dims = value.shape
|
101 |
+
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
|
102 |
+
value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)
|
103 |
+
sampling_grids = 2 * sampling_locations - 1
|
104 |
+
sampling_value_list = []
|
105 |
+
for level, (H_, W_) in enumerate(value_spatial_shapes):
|
106 |
+
# bs, H_*W_, num_heads, embed_dims ->
|
107 |
+
# bs, H_*W_, num_heads*embed_dims ->
|
108 |
+
# bs, num_heads*embed_dims, H_*W_ ->
|
109 |
+
# bs*num_heads, embed_dims, H_, W_
|
110 |
+
value_l_ = (
|
111 |
+
value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_)
|
112 |
+
)
|
113 |
+
# bs, num_queries, num_heads, num_points, 2 ->
|
114 |
+
# bs, num_heads, num_queries, num_points, 2 ->
|
115 |
+
# bs*num_heads, num_queries, num_points, 2
|
116 |
+
sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1)
|
117 |
+
# bs*num_heads, embed_dims, num_queries, num_points
|
118 |
+
sampling_value_l_ = F.grid_sample(
|
119 |
+
value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
|
120 |
+
)
|
121 |
+
sampling_value_list.append(sampling_value_l_)
|
122 |
+
# (bs, num_queries, num_heads, num_levels, num_points) ->
|
123 |
+
# (bs, num_heads, num_queries, num_levels, num_points) ->
|
124 |
+
# (bs, num_heads, 1, num_queries, num_levels*num_points)
|
125 |
+
attention_weights = attention_weights.transpose(1, 2).reshape(
|
126 |
+
bs * num_heads, 1, num_queries, num_levels * num_points
|
127 |
+
)
|
128 |
+
output = (
|
129 |
+
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
|
130 |
+
.sum(-1)
|
131 |
+
.view(bs, num_heads * embed_dims, num_queries)
|
132 |
+
)
|
133 |
+
return output.transpose(1, 2).contiguous()
|
134 |
+
|
135 |
+
|
136 |
+
class MultiScaleDeformableAttention(nn.Module):
|
137 |
+
"""Multi-Scale Deformable Attention Module used in Deformable-DETR
|
138 |
+
|
139 |
+
`Deformable DETR: Deformable Transformers for End-to-End Object Detection.
|
140 |
+
<https://arxiv.org/pdf/2010.04159.pdf>`_.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
embed_dim (int): The embedding dimension of Attention. Default: 256.
|
144 |
+
num_heads (int): The number of attention heads. Default: 8.
|
145 |
+
num_levels (int): The number of feature map used in Attention. Default: 4.
|
146 |
+
num_points (int): The number of sampling points for each query
|
147 |
+
in each head. Default: 4.
|
148 |
+
img2col_steps (int): The step used in image_to_column. Defualt: 64.
|
149 |
+
dropout (float): Dropout layer used in output. Default: 0.1.
|
150 |
+
batch_first (bool): if ``True``, then the input and output tensor will be
|
151 |
+
provided as `(bs, n, embed_dim)`. Default: False. `(n, bs, embed_dim)`
|
152 |
+
"""
|
153 |
+
|
154 |
+
def __init__(
|
155 |
+
self,
|
156 |
+
embed_dim: int = 256,
|
157 |
+
num_levels: int = 4,
|
158 |
+
num_heads: int = 8,
|
159 |
+
num_points: int = 4,
|
160 |
+
img2col_step: int = 64,
|
161 |
+
batch_first: bool = False,
|
162 |
+
):
|
163 |
+
super().__init__()
|
164 |
+
if embed_dim % num_heads != 0:
|
165 |
+
raise ValueError(
|
166 |
+
"embed_dim must be divisible by num_heads, but got {} and {}".format(
|
167 |
+
embed_dim, num_heads
|
168 |
+
)
|
169 |
+
)
|
170 |
+
head_dim = embed_dim // num_heads
|
171 |
+
|
172 |
+
self.batch_first = batch_first
|
173 |
+
|
174 |
+
if not _is_power_of_2(head_dim):
|
175 |
+
warnings.warn(
|
176 |
+
"""
|
177 |
+
You'd better set d_model in MSDeformAttn to make sure that
|
178 |
+
each dim of the attention head a power of 2, which is more efficient.
|
179 |
+
"""
|
180 |
+
)
|
181 |
+
|
182 |
+
self.im2col_step = img2col_step
|
183 |
+
self.embed_dim = embed_dim
|
184 |
+
self.num_heads = num_heads
|
185 |
+
self.num_levels = num_levels
|
186 |
+
self.num_points = num_points
|
187 |
+
self.sampling_offsets = nn.Linear(embed_dim, num_heads * num_levels * num_points * 2)
|
188 |
+
self.attention_weights = nn.Linear(embed_dim, num_heads * num_levels * num_points)
|
189 |
+
self.value_proj = nn.Linear(embed_dim, embed_dim)
|
190 |
+
self.output_proj = nn.Linear(embed_dim, embed_dim)
|
191 |
+
|
192 |
+
self.init_weights()
|
193 |
+
|
194 |
+
def _reset_parameters(self):
|
195 |
+
return self.init_weights()
|
196 |
+
|
197 |
+
def init_weights(self):
|
198 |
+
"""
|
199 |
+
Default initialization for Parameters of Module.
|
200 |
+
"""
|
201 |
+
constant_(self.sampling_offsets.weight.data, 0.0)
|
202 |
+
thetas = torch.arange(self.num_heads, dtype=torch.float32) * (
|
203 |
+
2.0 * math.pi / self.num_heads
|
204 |
+
)
|
205 |
+
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
|
206 |
+
grid_init = (
|
207 |
+
(grid_init / grid_init.abs().max(-1, keepdim=True)[0])
|
208 |
+
.view(self.num_heads, 1, 1, 2)
|
209 |
+
.repeat(1, self.num_levels, self.num_points, 1)
|
210 |
+
)
|
211 |
+
for i in range(self.num_points):
|
212 |
+
grid_init[:, :, i, :] *= i + 1
|
213 |
+
with torch.no_grad():
|
214 |
+
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
|
215 |
+
constant_(self.attention_weights.weight.data, 0.0)
|
216 |
+
constant_(self.attention_weights.bias.data, 0.0)
|
217 |
+
xavier_uniform_(self.value_proj.weight.data)
|
218 |
+
constant_(self.value_proj.bias.data, 0.0)
|
219 |
+
xavier_uniform_(self.output_proj.weight.data)
|
220 |
+
constant_(self.output_proj.bias.data, 0.0)
|
221 |
+
|
222 |
+
def freeze_sampling_offsets(self):
|
223 |
+
print("Freeze sampling offsets")
|
224 |
+
self.sampling_offsets.weight.requires_grad = False
|
225 |
+
self.sampling_offsets.bias.requires_grad = False
|
226 |
+
|
227 |
+
def freeze_attention_weights(self):
|
228 |
+
print("Freeze attention weights")
|
229 |
+
self.attention_weights.weight.requires_grad = False
|
230 |
+
self.attention_weights.bias.requires_grad = False
|
231 |
+
|
232 |
+
def forward(
|
233 |
+
self,
|
234 |
+
query: torch.Tensor,
|
235 |
+
key: Optional[torch.Tensor] = None,
|
236 |
+
value: Optional[torch.Tensor] = None,
|
237 |
+
query_pos: Optional[torch.Tensor] = None,
|
238 |
+
key_padding_mask: Optional[torch.Tensor] = None,
|
239 |
+
reference_points: Optional[torch.Tensor] = None,
|
240 |
+
spatial_shapes: Optional[torch.Tensor] = None,
|
241 |
+
level_start_index: Optional[torch.Tensor] = None,
|
242 |
+
**kwargs
|
243 |
+
) -> torch.Tensor:
|
244 |
+
|
245 |
+
"""Forward Function of MultiScaleDeformableAttention
|
246 |
+
|
247 |
+
Args:
|
248 |
+
query (torch.Tensor): Query embeddings with shape
|
249 |
+
`(num_query, bs, embed_dim)`
|
250 |
+
key (torch.Tensor): Key embeddings with shape
|
251 |
+
`(num_key, bs, embed_dim)`
|
252 |
+
value (torch.Tensor): Value embeddings with shape
|
253 |
+
`(num_key, bs, embed_dim)`
|
254 |
+
query_pos (torch.Tensor): The position embedding for `query`. Default: None.
|
255 |
+
key_padding_mask (torch.Tensor): ByteTensor for `query`, with shape `(bs, num_key)`,
|
256 |
+
indicating which elements within `key` to be ignored in attention.
|
257 |
+
reference_points (torch.Tensor): The normalized reference points
|
258 |
+
with shape `(bs, num_query, num_levels, 2)`,
|
259 |
+
all elements is range in [0, 1], top-left (0, 0),
|
260 |
+
bottom-right (1, 1), including padding are.
|
261 |
+
or `(N, Length_{query}, num_levels, 4)`, add additional
|
262 |
+
two dimensions `(h, w)` to form reference boxes.
|
263 |
+
spatial_shapes (torch.Tensor): Spatial shape of features in different levels.
|
264 |
+
With shape `(num_levels, 2)`, last dimension represents `(h, w)`.
|
265 |
+
level_start_index (torch.Tensor): The start index of each level. A tensor with
|
266 |
+
shape `(num_levels, )` which can be represented as
|
267 |
+
`[0, h_0 * w_0, h_0 * w_0 + h_1 * w_1, ...]`.
|
268 |
+
|
269 |
+
Returns:
|
270 |
+
torch.Tensor: forward results with shape `(num_query, bs, embed_dim)`
|
271 |
+
"""
|
272 |
+
if value is None:
|
273 |
+
value = query
|
274 |
+
|
275 |
+
if query_pos is not None:
|
276 |
+
query = query + query_pos
|
277 |
+
|
278 |
+
if not self.batch_first:
|
279 |
+
# change to (bs, num_query ,embed_dims)
|
280 |
+
query = query.permute(1, 0, 2)
|
281 |
+
value = value.permute(1, 0, 2)
|
282 |
+
|
283 |
+
bs, num_query, _ = query.shape
|
284 |
+
bs, num_value, _ = value.shape
|
285 |
+
|
286 |
+
assert (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() == num_value
|
287 |
+
|
288 |
+
value = self.value_proj(value)
|
289 |
+
if key_padding_mask is not None:
|
290 |
+
value = value.masked_fill(key_padding_mask[..., None], float(0))
|
291 |
+
value = value.view(bs, num_value, self.num_heads, -1)
|
292 |
+
sampling_offsets = self.sampling_offsets(query).view(
|
293 |
+
bs, num_query, self.num_heads, self.num_levels, self.num_points, 2
|
294 |
+
)
|
295 |
+
attention_weights = self.attention_weights(query).view(
|
296 |
+
bs, num_query, self.num_heads, self.num_levels * self.num_points
|
297 |
+
)
|
298 |
+
attention_weights = attention_weights.softmax(-1)
|
299 |
+
attention_weights = attention_weights.view(
|
300 |
+
bs,
|
301 |
+
num_query,
|
302 |
+
self.num_heads,
|
303 |
+
self.num_levels,
|
304 |
+
self.num_points,
|
305 |
+
)
|
306 |
+
|
307 |
+
# bs, num_query, num_heads, num_levels, num_points, 2
|
308 |
+
if reference_points.shape[-1] == 2:
|
309 |
+
offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
|
310 |
+
sampling_locations = (
|
311 |
+
reference_points[:, :, None, :, None, :]
|
312 |
+
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
|
313 |
+
)
|
314 |
+
elif reference_points.shape[-1] == 4:
|
315 |
+
sampling_locations = (
|
316 |
+
reference_points[:, :, None, :, None, :2]
|
317 |
+
+ sampling_offsets
|
318 |
+
/ self.num_points
|
319 |
+
* reference_points[:, :, None, :, None, 2:]
|
320 |
+
* 0.5
|
321 |
+
)
|
322 |
+
else:
|
323 |
+
raise ValueError(
|
324 |
+
"Last dim of reference_points must be 2 or 4, but get {} instead.".format(
|
325 |
+
reference_points.shape[-1]
|
326 |
+
)
|
327 |
+
)
|
328 |
+
|
329 |
+
if torch.cuda.is_available() and value.is_cuda:
|
330 |
+
halffloat = False
|
331 |
+
if value.dtype == torch.float16:
|
332 |
+
halffloat = True
|
333 |
+
value = value.float()
|
334 |
+
sampling_locations = sampling_locations.float()
|
335 |
+
attention_weights = attention_weights.float()
|
336 |
+
|
337 |
+
output = MultiScaleDeformableAttnFunction.apply(
|
338 |
+
value,
|
339 |
+
spatial_shapes,
|
340 |
+
level_start_index,
|
341 |
+
sampling_locations,
|
342 |
+
attention_weights,
|
343 |
+
self.im2col_step,
|
344 |
+
)
|
345 |
+
|
346 |
+
if halffloat:
|
347 |
+
output = output.half()
|
348 |
+
else:
|
349 |
+
output = multi_scale_deformable_attn_pytorch(
|
350 |
+
value, spatial_shapes, sampling_locations, attention_weights
|
351 |
+
)
|
352 |
+
|
353 |
+
output = self.output_proj(output)
|
354 |
+
|
355 |
+
if not self.batch_first:
|
356 |
+
output = output.permute(1, 0, 2)
|
357 |
+
|
358 |
+
return output
|
359 |
+
|
360 |
+
|
361 |
+
def create_dummy_class(klass, dependency, message=""):
|
362 |
+
"""
|
363 |
+
When a dependency of a class is not available, create a dummy class which throws ImportError
|
364 |
+
when used.
|
365 |
+
|
366 |
+
Args:
|
367 |
+
klass (str): name of the class.
|
368 |
+
dependency (str): name of the dependency.
|
369 |
+
message: extra message to print
|
370 |
+
Returns:
|
371 |
+
class: a class object
|
372 |
+
"""
|
373 |
+
err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, klass)
|
374 |
+
if message:
|
375 |
+
err = err + " " + message
|
376 |
+
|
377 |
+
class _DummyMetaClass(type):
|
378 |
+
# throw error on class attribute access
|
379 |
+
def __getattr__(_, __): # noqa: B902
|
380 |
+
raise ImportError(err)
|
381 |
+
|
382 |
+
class _Dummy(object, metaclass=_DummyMetaClass):
|
383 |
+
# throw error on constructor
|
384 |
+
def __init__(self, *args, **kwargs):
|
385 |
+
raise ImportError(err)
|
386 |
+
|
387 |
+
return _Dummy
|
388 |
+
|
389 |
+
|
390 |
+
def create_dummy_func(func, dependency, message=""):
|
391 |
+
"""
|
392 |
+
When a dependency of a function is not available, create a dummy function which throws
|
393 |
+
ImportError when used.
|
394 |
+
|
395 |
+
Args:
|
396 |
+
func (str): name of the function.
|
397 |
+
dependency (str or list[str]): name(s) of the dependency.
|
398 |
+
message: extra message to print
|
399 |
+
Returns:
|
400 |
+
function: a function object
|
401 |
+
"""
|
402 |
+
err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, func)
|
403 |
+
if message:
|
404 |
+
err = err + " " + message
|
405 |
+
|
406 |
+
if isinstance(dependency, (list, tuple)):
|
407 |
+
dependency = ",".join(dependency)
|
408 |
+
|
409 |
+
def _dummy(*args, **kwargs):
|
410 |
+
raise ImportError(err)
|
411 |
+
|
412 |
+
return _dummy
|
models/deformable_detr/position_encoding.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Deformable DETR
|
3 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------
|
6 |
+
# Modified from DETR (https://github.com/facebookresearch/detr)
|
7 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
8 |
+
# ------------------------------------------------------------------------
|
9 |
+
|
10 |
+
"""
|
11 |
+
Various positional encodings for the transformer.
|
12 |
+
"""
|
13 |
+
import math
|
14 |
+
|
15 |
+
import torch
|
16 |
+
from torch import nn
|
17 |
+
|
18 |
+
from util.misc import NestedTensor
|
19 |
+
|
20 |
+
|
21 |
+
class PositionEmbeddingSine(nn.Module):
|
22 |
+
"""
|
23 |
+
This is a more standard version of the position embedding, very similar to the one
|
24 |
+
used by the Attention is all you need paper, generalized to work on images.
|
25 |
+
"""
|
26 |
+
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
|
27 |
+
super().__init__()
|
28 |
+
self.num_pos_feats = num_pos_feats
|
29 |
+
self.temperature = temperature
|
30 |
+
self.normalize = normalize
|
31 |
+
if scale is not None and normalize is False:
|
32 |
+
raise ValueError("normalize should be True if scale is passed")
|
33 |
+
if scale is None:
|
34 |
+
scale = 2 * math.pi
|
35 |
+
self.scale = scale
|
36 |
+
|
37 |
+
def forward(self, tensor_list: NestedTensor):
|
38 |
+
x = tensor_list.tensors
|
39 |
+
mask = tensor_list.mask
|
40 |
+
assert mask is not None
|
41 |
+
not_mask = ~mask
|
42 |
+
y_embed = not_mask.cumsum(1, dtype=torch.float32)
|
43 |
+
x_embed = not_mask.cumsum(2, dtype=torch.float32)
|
44 |
+
if self.normalize:
|
45 |
+
eps = 1e-6
|
46 |
+
y_embed = (y_embed - 0.5) / (y_embed[:, -1:, :] + eps) * self.scale
|
47 |
+
x_embed = (x_embed - 0.5) / (x_embed[:, :, -1:] + eps) * self.scale
|
48 |
+
|
49 |
+
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
50 |
+
# dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
51 |
+
dim_t = torch.div(dim_t, 2, rounding_mode='floor')
|
52 |
+
dim_t = self.temperature ** (2 * dim_t / self.num_pos_feats)
|
53 |
+
|
54 |
+
pos_x = x_embed[:, :, :, None] / dim_t
|
55 |
+
pos_y = y_embed[:, :, :, None] / dim_t
|
56 |
+
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
57 |
+
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
58 |
+
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
59 |
+
return pos
|
60 |
+
|
61 |
+
|
62 |
+
class PositionEmbeddingLearned(nn.Module):
|
63 |
+
"""
|
64 |
+
Absolute pos embedding, learned.
|
65 |
+
"""
|
66 |
+
def __init__(self, num_pos_feats=256):
|
67 |
+
super().__init__()
|
68 |
+
self.row_embed = nn.Embedding(50, num_pos_feats)
|
69 |
+
self.col_embed = nn.Embedding(50, num_pos_feats)
|
70 |
+
self.reset_parameters()
|
71 |
+
|
72 |
+
def reset_parameters(self):
|
73 |
+
nn.init.uniform_(self.row_embed.weight)
|
74 |
+
nn.init.uniform_(self.col_embed.weight)
|
75 |
+
|
76 |
+
def forward(self, tensor_list: NestedTensor):
|
77 |
+
x = tensor_list.tensors
|
78 |
+
h, w = x.shape[-2:]
|
79 |
+
i = torch.arange(w, device=x.device)
|
80 |
+
j = torch.arange(h, device=x.device)
|
81 |
+
x_emb = self.col_embed(i)
|
82 |
+
y_emb = self.row_embed(j)
|
83 |
+
pos = torch.cat([
|
84 |
+
x_emb.unsqueeze(0).repeat(h, 1, 1),
|
85 |
+
y_emb.unsqueeze(1).repeat(1, w, 1),
|
86 |
+
], dim=-1).permute(2, 0, 1).unsqueeze(0).repeat(x.shape[0], 1, 1, 1)
|
87 |
+
return pos
|
88 |
+
|
89 |
+
|
90 |
+
def build_position_encoding(args):
|
91 |
+
N_steps = args.hidden_dim // 2
|
92 |
+
if args.position_embedding in ('v2', 'sine'):
|
93 |
+
# TODO find a better way of exposing other arguments
|
94 |
+
position_embedding = PositionEmbeddingSine(N_steps, normalize=True)
|
95 |
+
elif args.position_embedding in ('v3', 'learned'):
|
96 |
+
position_embedding = PositionEmbeddingLearned(N_steps)
|
97 |
+
else:
|
98 |
+
raise ValueError(f"not supported {args.position_embedding}")
|
99 |
+
|
100 |
+
return position_embedding
|
models/deformable_detr/segmentation.py
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Deformable DETR
|
3 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------
|
6 |
+
# Modified from DETR (https://github.com/facebookresearch/detr)
|
7 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
8 |
+
# ------------------------------------------------------------------------
|
9 |
+
|
10 |
+
"""
|
11 |
+
This file provides the definition of the convolutional heads used to predict masks, as well as the losses
|
12 |
+
"""
|
13 |
+
import io
|
14 |
+
from collections import defaultdict
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn as nn
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from PIL import Image
|
20 |
+
|
21 |
+
import util.box_ops as box_ops
|
22 |
+
from util.misc import NestedTensor, interpolate, nested_tensor_from_tensor_list
|
23 |
+
|
24 |
+
try:
|
25 |
+
from panopticapi.utils import id2rgb, rgb2id
|
26 |
+
except ImportError:
|
27 |
+
pass
|
28 |
+
|
29 |
+
|
30 |
+
class DETRsegm(nn.Module):
|
31 |
+
def __init__(self, detr, freeze_detr=False):
|
32 |
+
super().__init__()
|
33 |
+
self.detr = detr
|
34 |
+
|
35 |
+
if freeze_detr:
|
36 |
+
for p in self.parameters():
|
37 |
+
p.requires_grad_(False)
|
38 |
+
|
39 |
+
hidden_dim, nheads = detr.transformer.d_model, detr.transformer.nhead
|
40 |
+
self.bbox_attention = MHAttentionMap(hidden_dim, hidden_dim, nheads, dropout=0)
|
41 |
+
self.mask_head = MaskHeadSmallConv(hidden_dim + nheads, [1024, 512, 256], hidden_dim)
|
42 |
+
|
43 |
+
def forward(self, samples: NestedTensor):
|
44 |
+
if not isinstance(samples, NestedTensor):
|
45 |
+
samples = nested_tensor_from_tensor_list(samples)
|
46 |
+
features, pos = self.detr.backbone(samples)
|
47 |
+
|
48 |
+
bs = features[-1].tensors.shape[0]
|
49 |
+
|
50 |
+
src, mask = features[-1].decompose()
|
51 |
+
src_proj = self.detr.input_proj(src)
|
52 |
+
hs, memory = self.detr.transformer(src_proj, mask, self.detr.query_embed.weight, pos[-1])
|
53 |
+
|
54 |
+
outputs_class = self.detr.class_embed(hs)
|
55 |
+
outputs_coord = self.detr.bbox_embed(hs).sigmoid()
|
56 |
+
out = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord[-1]}
|
57 |
+
if self.detr.aux_loss:
|
58 |
+
out["aux_outputs"] = [
|
59 |
+
{"pred_logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])
|
60 |
+
]
|
61 |
+
|
62 |
+
# FIXME h_boxes takes the last one computed, keep this in mind
|
63 |
+
bbox_mask = self.bbox_attention(hs[-1], memory, mask=mask)
|
64 |
+
|
65 |
+
seg_masks = self.mask_head(src_proj, bbox_mask, [features[2].tensors, features[1].tensors, features[0].tensors])
|
66 |
+
outputs_seg_masks = seg_masks.view(bs, self.detr.num_queries, seg_masks.shape[-2], seg_masks.shape[-1])
|
67 |
+
|
68 |
+
out["pred_masks"] = outputs_seg_masks
|
69 |
+
return out
|
70 |
+
|
71 |
+
|
72 |
+
class MaskHeadSmallConv(nn.Module):
|
73 |
+
"""
|
74 |
+
Simple convolutional head, using group norm.
|
75 |
+
Upsampling is done using a FPN approach
|
76 |
+
"""
|
77 |
+
|
78 |
+
def __init__(self, dim, fpn_dims, context_dim):
|
79 |
+
super().__init__()
|
80 |
+
|
81 |
+
inter_dims = [dim, context_dim // 2, context_dim // 4, context_dim // 8, context_dim // 16, context_dim // 64]
|
82 |
+
self.lay1 = torch.nn.Conv2d(dim, dim, 3, padding=1)
|
83 |
+
self.gn1 = torch.nn.GroupNorm(8, dim)
|
84 |
+
self.lay2 = torch.nn.Conv2d(dim, inter_dims[1], 3, padding=1)
|
85 |
+
self.gn2 = torch.nn.GroupNorm(8, inter_dims[1])
|
86 |
+
self.lay3 = torch.nn.Conv2d(inter_dims[1], inter_dims[2], 3, padding=1)
|
87 |
+
self.gn3 = torch.nn.GroupNorm(8, inter_dims[2])
|
88 |
+
self.lay4 = torch.nn.Conv2d(inter_dims[2], inter_dims[3], 3, padding=1)
|
89 |
+
self.gn4 = torch.nn.GroupNorm(8, inter_dims[3])
|
90 |
+
self.lay5 = torch.nn.Conv2d(inter_dims[3], inter_dims[4], 3, padding=1)
|
91 |
+
self.gn5 = torch.nn.GroupNorm(8, inter_dims[4])
|
92 |
+
self.out_lay = torch.nn.Conv2d(inter_dims[4], 1, 3, padding=1)
|
93 |
+
|
94 |
+
self.dim = dim
|
95 |
+
|
96 |
+
self.adapter1 = torch.nn.Conv2d(fpn_dims[0], inter_dims[1], 1)
|
97 |
+
self.adapter2 = torch.nn.Conv2d(fpn_dims[1], inter_dims[2], 1)
|
98 |
+
self.adapter3 = torch.nn.Conv2d(fpn_dims[2], inter_dims[3], 1)
|
99 |
+
|
100 |
+
for m in self.modules():
|
101 |
+
if isinstance(m, nn.Conv2d):
|
102 |
+
nn.init.kaiming_uniform_(m.weight, a=1)
|
103 |
+
nn.init.constant_(m.bias, 0)
|
104 |
+
|
105 |
+
def forward(self, x, bbox_mask, fpns):
|
106 |
+
def expand(tensor, length):
|
107 |
+
return tensor.unsqueeze(1).repeat(1, int(length), 1, 1, 1).flatten(0, 1)
|
108 |
+
|
109 |
+
x = torch.cat([expand(x, bbox_mask.shape[1]), bbox_mask.flatten(0, 1)], 1)
|
110 |
+
|
111 |
+
x = self.lay1(x)
|
112 |
+
x = self.gn1(x)
|
113 |
+
x = F.relu(x)
|
114 |
+
x = self.lay2(x)
|
115 |
+
x = self.gn2(x)
|
116 |
+
x = F.relu(x)
|
117 |
+
|
118 |
+
cur_fpn = self.adapter1(fpns[0])
|
119 |
+
if cur_fpn.size(0) != x.size(0):
|
120 |
+
cur_fpn = expand(cur_fpn, x.size(0) / cur_fpn.size(0))
|
121 |
+
x = cur_fpn + F.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
|
122 |
+
x = self.lay3(x)
|
123 |
+
x = self.gn3(x)
|
124 |
+
x = F.relu(x)
|
125 |
+
|
126 |
+
cur_fpn = self.adapter2(fpns[1])
|
127 |
+
if cur_fpn.size(0) != x.size(0):
|
128 |
+
cur_fpn = expand(cur_fpn, x.size(0) / cur_fpn.size(0))
|
129 |
+
x = cur_fpn + F.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
|
130 |
+
x = self.lay4(x)
|
131 |
+
x = self.gn4(x)
|
132 |
+
x = F.relu(x)
|
133 |
+
|
134 |
+
cur_fpn = self.adapter3(fpns[2])
|
135 |
+
if cur_fpn.size(0) != x.size(0):
|
136 |
+
cur_fpn = expand(cur_fpn, x.size(0) / cur_fpn.size(0))
|
137 |
+
x = cur_fpn + F.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
|
138 |
+
x = self.lay5(x)
|
139 |
+
x = self.gn5(x)
|
140 |
+
x = F.relu(x)
|
141 |
+
|
142 |
+
x = self.out_lay(x)
|
143 |
+
return x
|
144 |
+
|
145 |
+
|
146 |
+
class MHAttentionMap(nn.Module):
|
147 |
+
"""This is a 2D attention module, which only returns the attention softmax (no multiplication by value)"""
|
148 |
+
|
149 |
+
def __init__(self, query_dim, hidden_dim, num_heads, dropout=0, bias=True):
|
150 |
+
super().__init__()
|
151 |
+
self.num_heads = num_heads
|
152 |
+
self.hidden_dim = hidden_dim
|
153 |
+
self.dropout = nn.Dropout(dropout)
|
154 |
+
|
155 |
+
self.q_linear = nn.Linear(query_dim, hidden_dim, bias=bias)
|
156 |
+
self.k_linear = nn.Linear(query_dim, hidden_dim, bias=bias)
|
157 |
+
|
158 |
+
nn.init.zeros_(self.k_linear.bias)
|
159 |
+
nn.init.zeros_(self.q_linear.bias)
|
160 |
+
nn.init.xavier_uniform_(self.k_linear.weight)
|
161 |
+
nn.init.xavier_uniform_(self.q_linear.weight)
|
162 |
+
self.normalize_fact = float(hidden_dim / self.num_heads) ** -0.5
|
163 |
+
|
164 |
+
def forward(self, q, k, mask=None):
|
165 |
+
q = self.q_linear(q)
|
166 |
+
k = F.conv2d(k, self.k_linear.weight.unsqueeze(-1).unsqueeze(-1), self.k_linear.bias)
|
167 |
+
qh = q.view(q.shape[0], q.shape[1], self.num_heads, self.hidden_dim // self.num_heads)
|
168 |
+
kh = k.view(k.shape[0], self.num_heads, self.hidden_dim // self.num_heads, k.shape[-2], k.shape[-1])
|
169 |
+
weights = torch.einsum("bqnc,bnchw->bqnhw", qh * self.normalize_fact, kh)
|
170 |
+
|
171 |
+
if mask is not None:
|
172 |
+
weights.masked_fill_(mask.unsqueeze(1).unsqueeze(1), float("-inf"))
|
173 |
+
weights = F.softmax(weights.flatten(2), dim=-1).view_as(weights)
|
174 |
+
weights = self.dropout(weights)
|
175 |
+
return weights
|
176 |
+
|
177 |
+
|
178 |
+
def dice_loss(inputs, targets, num_boxes):
|
179 |
+
"""
|
180 |
+
Compute the DICE loss, similar to generalized IOU for masks
|
181 |
+
Args:
|
182 |
+
inputs: A float tensor of arbitrary shape.
|
183 |
+
The predictions for each example.
|
184 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
185 |
+
classification label for each element in inputs
|
186 |
+
(0 for the negative class and 1 for the positive class).
|
187 |
+
"""
|
188 |
+
inputs = inputs.sigmoid()
|
189 |
+
inputs = inputs.flatten(1)
|
190 |
+
numerator = 2 * (inputs * targets).sum(1)
|
191 |
+
denominator = inputs.sum(-1) + targets.sum(-1)
|
192 |
+
loss = 1 - (numerator + 1) / (denominator + 1)
|
193 |
+
return loss.sum() / num_boxes
|
194 |
+
|
195 |
+
|
196 |
+
def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2):
|
197 |
+
"""
|
198 |
+
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
|
199 |
+
Args:
|
200 |
+
inputs: A float tensor of arbitrary shape.
|
201 |
+
The predictions for each example.
|
202 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
203 |
+
classification label for each element in inputs
|
204 |
+
(0 for the negative class and 1 for the positive class).
|
205 |
+
alpha: (optional) Weighting factor in range (0,1) to balance
|
206 |
+
positive vs negative examples. Default = -1 (no weighting).
|
207 |
+
gamma: Exponent of the modulating factor (1 - p_t) to
|
208 |
+
balance easy vs hard examples.
|
209 |
+
Returns:
|
210 |
+
Loss tensor
|
211 |
+
"""
|
212 |
+
prob = inputs.sigmoid()
|
213 |
+
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
|
214 |
+
p_t = prob * targets + (1 - prob) * (1 - targets)
|
215 |
+
loss = ce_loss * ((1 - p_t) ** gamma)
|
216 |
+
|
217 |
+
if alpha >= 0:
|
218 |
+
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
|
219 |
+
loss = alpha_t * loss
|
220 |
+
|
221 |
+
return loss.mean(1).sum() / num_boxes
|
222 |
+
|
223 |
+
|
224 |
+
class PostProcessSegm(nn.Module):
|
225 |
+
def __init__(self, threshold=0.5):
|
226 |
+
super().__init__()
|
227 |
+
self.threshold = threshold
|
228 |
+
|
229 |
+
@torch.no_grad()
|
230 |
+
def forward(self, results, outputs, orig_target_sizes, max_target_sizes):
|
231 |
+
assert len(orig_target_sizes) == len(max_target_sizes)
|
232 |
+
max_h, max_w = max_target_sizes.max(0)[0].tolist()
|
233 |
+
outputs_masks = outputs["pred_masks"].squeeze(2)
|
234 |
+
outputs_masks = F.interpolate(outputs_masks, size=(max_h, max_w), mode="bilinear", align_corners=False)
|
235 |
+
outputs_masks = (outputs_masks.sigmoid() > self.threshold).cpu()
|
236 |
+
|
237 |
+
for i, (cur_mask, t, tt) in enumerate(zip(outputs_masks, max_target_sizes, orig_target_sizes)):
|
238 |
+
img_h, img_w = t[0], t[1]
|
239 |
+
results[i]["masks"] = cur_mask[:, :img_h, :img_w].unsqueeze(1)
|
240 |
+
results[i]["masks"] = F.interpolate(
|
241 |
+
results[i]["masks"].float(), size=tuple(tt.tolist()), mode="nearest"
|
242 |
+
).byte()
|
243 |
+
|
244 |
+
return results
|
245 |
+
|
246 |
+
|
247 |
+
class PostProcessPanoptic(nn.Module):
|
248 |
+
"""This class converts the output of the model to the final panoptic result, in the format expected by the
|
249 |
+
coco panoptic API """
|
250 |
+
|
251 |
+
def __init__(self, is_thing_map, threshold=0.85):
|
252 |
+
"""
|
253 |
+
Parameters:
|
254 |
+
is_thing_map: This is a whose keys are the class ids, and the values a boolean indicating whether
|
255 |
+
the class is a thing (True) or a stuff (False) class
|
256 |
+
threshold: confidence threshold: segments with confidence lower than this will be deleted
|
257 |
+
"""
|
258 |
+
super().__init__()
|
259 |
+
self.threshold = threshold
|
260 |
+
self.is_thing_map = is_thing_map
|
261 |
+
|
262 |
+
def forward(self, outputs, processed_sizes, target_sizes=None):
|
263 |
+
""" This function computes the panoptic prediction from the model's predictions.
|
264 |
+
Parameters:
|
265 |
+
outputs: This is a dict coming directly from the model. See the model doc for the content.
|
266 |
+
processed_sizes: This is a list of tuples (or torch tensors) of sizes of the images that were passed to the
|
267 |
+
model, ie the size after data augmentation but before batching.
|
268 |
+
target_sizes: This is a list of tuples (or torch tensors) corresponding to the requested final size
|
269 |
+
of each prediction. If left to None, it will default to the processed_sizes
|
270 |
+
"""
|
271 |
+
if target_sizes is None:
|
272 |
+
target_sizes = processed_sizes
|
273 |
+
assert len(processed_sizes) == len(target_sizes)
|
274 |
+
out_logits, raw_masks, raw_boxes = outputs["pred_logits"], outputs["pred_masks"], outputs["pred_boxes"]
|
275 |
+
assert len(out_logits) == len(raw_masks) == len(target_sizes)
|
276 |
+
preds = []
|
277 |
+
|
278 |
+
def to_tuple(tup):
|
279 |
+
if isinstance(tup, tuple):
|
280 |
+
return tup
|
281 |
+
return tuple(tup.cpu().tolist())
|
282 |
+
|
283 |
+
for cur_logits, cur_masks, cur_boxes, size, target_size in zip(
|
284 |
+
out_logits, raw_masks, raw_boxes, processed_sizes, target_sizes
|
285 |
+
):
|
286 |
+
# we filter empty queries and detection below threshold
|
287 |
+
scores, labels = cur_logits.softmax(-1).max(-1)
|
288 |
+
keep = labels.ne(outputs["pred_logits"].shape[-1] - 1) & (scores > self.threshold)
|
289 |
+
cur_scores, cur_classes = cur_logits.softmax(-1).max(-1)
|
290 |
+
cur_scores = cur_scores[keep]
|
291 |
+
cur_classes = cur_classes[keep]
|
292 |
+
cur_masks = cur_masks[keep]
|
293 |
+
cur_masks = interpolate(cur_masks[None], to_tuple(size), mode="bilinear").squeeze(0)
|
294 |
+
cur_boxes = box_ops.box_cxcywh_to_xyxy(cur_boxes[keep])
|
295 |
+
|
296 |
+
h, w = cur_masks.shape[-2:]
|
297 |
+
assert len(cur_boxes) == len(cur_classes)
|
298 |
+
|
299 |
+
# It may be that we have several predicted masks for the same stuff class.
|
300 |
+
# In the following, we track the list of masks ids for each stuff class (they are merged later on)
|
301 |
+
cur_masks = cur_masks.flatten(1)
|
302 |
+
stuff_equiv_classes = defaultdict(lambda: [])
|
303 |
+
for k, label in enumerate(cur_classes):
|
304 |
+
if not self.is_thing_map[label.item()]:
|
305 |
+
stuff_equiv_classes[label.item()].append(k)
|
306 |
+
|
307 |
+
def get_ids_area(masks, scores, dedup=False):
|
308 |
+
# This helper function creates the final panoptic segmentation image
|
309 |
+
# It also returns the area of the masks that appears on the image
|
310 |
+
|
311 |
+
m_id = masks.transpose(0, 1).softmax(-1)
|
312 |
+
|
313 |
+
if m_id.shape[-1] == 0:
|
314 |
+
# We didn't detect any mask :(
|
315 |
+
m_id = torch.zeros((h, w), dtype=torch.long, device=m_id.device)
|
316 |
+
else:
|
317 |
+
m_id = m_id.argmax(-1).view(h, w)
|
318 |
+
|
319 |
+
if dedup:
|
320 |
+
# Merge the masks corresponding to the same stuff class
|
321 |
+
for equiv in stuff_equiv_classes.values():
|
322 |
+
if len(equiv) > 1:
|
323 |
+
for eq_id in equiv:
|
324 |
+
m_id.masked_fill_(m_id.eq(eq_id), equiv[0])
|
325 |
+
|
326 |
+
final_h, final_w = to_tuple(target_size)
|
327 |
+
|
328 |
+
seg_img = Image.fromarray(id2rgb(m_id.view(h, w).cpu().numpy()))
|
329 |
+
seg_img = seg_img.resize(size=(final_w, final_h), resample=Image.NEAREST)
|
330 |
+
|
331 |
+
np_seg_img = (
|
332 |
+
torch.ByteTensor(torch.ByteStorage.from_buffer(seg_img.tobytes())).view(final_h, final_w, 3).numpy()
|
333 |
+
)
|
334 |
+
m_id = torch.from_numpy(rgb2id(np_seg_img))
|
335 |
+
|
336 |
+
area = []
|
337 |
+
for i in range(len(scores)):
|
338 |
+
area.append(m_id.eq(i).sum().item())
|
339 |
+
return area, seg_img
|
340 |
+
|
341 |
+
area, seg_img = get_ids_area(cur_masks, cur_scores, dedup=True)
|
342 |
+
if cur_classes.numel() > 0:
|
343 |
+
# We know filter empty masks as long as we find some
|
344 |
+
while True:
|
345 |
+
filtered_small = torch.as_tensor(
|
346 |
+
[area[i] <= 4 for i, c in enumerate(cur_classes)], dtype=torch.bool, device=keep.device
|
347 |
+
)
|
348 |
+
if filtered_small.any().item():
|
349 |
+
cur_scores = cur_scores[~filtered_small]
|
350 |
+
cur_classes = cur_classes[~filtered_small]
|
351 |
+
cur_masks = cur_masks[~filtered_small]
|
352 |
+
area, seg_img = get_ids_area(cur_masks, cur_scores)
|
353 |
+
else:
|
354 |
+
break
|
355 |
+
|
356 |
+
else:
|
357 |
+
cur_classes = torch.ones(1, dtype=torch.long, device=cur_classes.device)
|
358 |
+
|
359 |
+
segments_info = []
|
360 |
+
for i, a in enumerate(area):
|
361 |
+
cat = cur_classes[i].item()
|
362 |
+
segments_info.append({"id": i, "isthing": self.is_thing_map[cat], "category_id": cat, "area": a})
|
363 |
+
del cur_classes
|
364 |
+
|
365 |
+
with io.BytesIO() as out:
|
366 |
+
seg_img.save(out, format="PNG")
|
367 |
+
predictions = {"png_string": out.getvalue(), "segments_info": segments_info}
|
368 |
+
preds.append(predictions)
|
369 |
+
return preds
|
models/deformable_detr/swin.py
ADDED
@@ -0,0 +1,727 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# Swin Transformer
|
3 |
+
# Copyright (c) 2021 Microsoft
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# Written by Ze Liu, Yutong Lin, Yixuan Wei
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
9 |
+
# Modified by Bowen Cheng from https://github.com/SwinTransformer/Swin-Transformer-Semantic-Segmentation/blob/main/mmseg/models/backbones/swin_transformer.py
|
10 |
+
# Modified by Jeffrey Ouyang-Zhang
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import torch.nn.functional as F
|
16 |
+
import torch.utils.checkpoint as checkpoint
|
17 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
18 |
+
|
19 |
+
swin_l_kwargs = {
|
20 |
+
'pretrain_img_size': 384,
|
21 |
+
'embed_dim': 192,
|
22 |
+
'depths': [2, 2, 18, 2],
|
23 |
+
'num_heads': [6, 12, 24, 48],
|
24 |
+
'window_size': 12,
|
25 |
+
'ape': False,
|
26 |
+
'drop_path_rate': 0.3,
|
27 |
+
'patch_norm': True,
|
28 |
+
|
29 |
+
'out_indices': (1, 2, 3),
|
30 |
+
'use_checkpoint': True,
|
31 |
+
}
|
32 |
+
swin_l_weights = 'weights/swin_large_patch4_window12_384_22k.pth'
|
33 |
+
|
34 |
+
swin_b_kwargs = {
|
35 |
+
'pretrain_img_size': 384,
|
36 |
+
'embed_dim': 128,
|
37 |
+
'depths': [2, 2, 18, 2],
|
38 |
+
'num_heads': [4, 8, 16, 32],
|
39 |
+
'window_size': 12,
|
40 |
+
'ape': False,
|
41 |
+
'drop_path_rate': 0.3,
|
42 |
+
'patch_norm': True,
|
43 |
+
|
44 |
+
'out_indices': (1, 2, 3),
|
45 |
+
'use_checkpoint': True,
|
46 |
+
}
|
47 |
+
swin_b_weights = 'weights/swin_base_patch4_window12_384_22k.pth'
|
48 |
+
|
49 |
+
def get_swinl(**add_kwargs):
|
50 |
+
model = SwinTransformer(**swin_l_kwargs, **add_kwargs)
|
51 |
+
state_dict = torch.load(swin_l_weights)
|
52 |
+
load_info = model.load_state_dict(state_dict['model'], strict=False)
|
53 |
+
print('Missing swin keys', load_info.missing_keys)
|
54 |
+
print('Unexpected swin keys', load_info.unexpected_keys)
|
55 |
+
return model
|
56 |
+
|
57 |
+
def get_swinb(**add_kwargs):
|
58 |
+
model = SwinTransformer(**swin_b_kwargs, **add_kwargs)
|
59 |
+
state_dict = torch.load(swin_b_weights)
|
60 |
+
load_info = model.load_state_dict(state_dict['model'], strict=False)
|
61 |
+
print('Missing swin keys', load_info.missing_keys)
|
62 |
+
print('Unexpected swin keys', load_info.unexpected_keys)
|
63 |
+
return model
|
64 |
+
|
65 |
+
class Mlp(nn.Module):
|
66 |
+
"""Multilayer perceptron."""
|
67 |
+
|
68 |
+
def __init__(
|
69 |
+
self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0
|
70 |
+
):
|
71 |
+
super().__init__()
|
72 |
+
out_features = out_features or in_features
|
73 |
+
hidden_features = hidden_features or in_features
|
74 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
75 |
+
self.act = act_layer()
|
76 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
77 |
+
self.drop = nn.Dropout(drop)
|
78 |
+
|
79 |
+
def forward(self, x):
|
80 |
+
x = self.fc1(x)
|
81 |
+
x = self.act(x)
|
82 |
+
x = self.drop(x)
|
83 |
+
x = self.fc2(x)
|
84 |
+
x = self.drop(x)
|
85 |
+
return x
|
86 |
+
|
87 |
+
|
88 |
+
def window_partition(x, window_size):
|
89 |
+
"""
|
90 |
+
Args:
|
91 |
+
x: (B, H, W, C)
|
92 |
+
window_size (int): window size
|
93 |
+
Returns:
|
94 |
+
windows: (num_windows*B, window_size, window_size, C)
|
95 |
+
"""
|
96 |
+
B, H, W, C = x.shape
|
97 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
98 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
99 |
+
return windows
|
100 |
+
|
101 |
+
|
102 |
+
def window_reverse(windows, window_size, H, W):
|
103 |
+
"""
|
104 |
+
Args:
|
105 |
+
windows: (num_windows*B, window_size, window_size, C)
|
106 |
+
window_size (int): Window size
|
107 |
+
H (int): Height of image
|
108 |
+
W (int): Width of image
|
109 |
+
Returns:
|
110 |
+
x: (B, H, W, C)
|
111 |
+
"""
|
112 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
113 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
114 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
115 |
+
return x
|
116 |
+
|
117 |
+
|
118 |
+
class WindowAttention(nn.Module):
|
119 |
+
"""Window based multi-head self attention (W-MSA) module with relative position bias.
|
120 |
+
It supports both of shifted and non-shifted window.
|
121 |
+
Args:
|
122 |
+
dim (int): Number of input channels.
|
123 |
+
window_size (tuple[int]): The height and width of the window.
|
124 |
+
num_heads (int): Number of attention heads.
|
125 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
126 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
127 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
128 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
129 |
+
"""
|
130 |
+
|
131 |
+
def __init__(
|
132 |
+
self,
|
133 |
+
dim,
|
134 |
+
window_size,
|
135 |
+
num_heads,
|
136 |
+
qkv_bias=True,
|
137 |
+
qk_scale=None,
|
138 |
+
attn_drop=0.0,
|
139 |
+
proj_drop=0.0,
|
140 |
+
):
|
141 |
+
|
142 |
+
super().__init__()
|
143 |
+
self.dim = dim
|
144 |
+
self.window_size = window_size # Wh, Ww
|
145 |
+
self.num_heads = num_heads
|
146 |
+
head_dim = dim // num_heads
|
147 |
+
self.scale = qk_scale or head_dim ** -0.5
|
148 |
+
|
149 |
+
# define a parameter table of relative position bias
|
150 |
+
self.relative_position_bias_table = nn.Parameter(
|
151 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
|
152 |
+
) # 2*Wh-1 * 2*Ww-1, nH
|
153 |
+
|
154 |
+
# get pair-wise relative position index for each token inside the window
|
155 |
+
coords_h = torch.arange(self.window_size[0])
|
156 |
+
coords_w = torch.arange(self.window_size[1])
|
157 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
158 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
159 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
160 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
161 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
162 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
163 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
164 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
165 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
166 |
+
|
167 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
168 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
169 |
+
self.proj = nn.Linear(dim, dim)
|
170 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
171 |
+
|
172 |
+
trunc_normal_(self.relative_position_bias_table, std=0.02)
|
173 |
+
self.softmax = nn.Softmax(dim=-1)
|
174 |
+
|
175 |
+
def forward(self, x, mask=None):
|
176 |
+
"""Forward function.
|
177 |
+
Args:
|
178 |
+
x: input features with shape of (num_windows*B, N, C)
|
179 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
180 |
+
"""
|
181 |
+
B_, N, C = x.shape
|
182 |
+
qkv = (
|
183 |
+
self.qkv(x)
|
184 |
+
.reshape(B_, N, 3, self.num_heads, C // self.num_heads)
|
185 |
+
.permute(2, 0, 3, 1, 4)
|
186 |
+
)
|
187 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
188 |
+
|
189 |
+
q = q * self.scale
|
190 |
+
attn = q @ k.transpose(-2, -1)
|
191 |
+
|
192 |
+
relative_position_bias = self.relative_position_bias_table[
|
193 |
+
self.relative_position_index.view(-1)
|
194 |
+
].view(
|
195 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
|
196 |
+
) # Wh*Ww,Wh*Ww,nH
|
197 |
+
relative_position_bias = relative_position_bias.permute(
|
198 |
+
2, 0, 1
|
199 |
+
).contiguous() # nH, Wh*Ww, Wh*Ww
|
200 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
201 |
+
|
202 |
+
if mask is not None:
|
203 |
+
nW = mask.shape[0]
|
204 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
205 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
206 |
+
attn = self.softmax(attn)
|
207 |
+
else:
|
208 |
+
attn = self.softmax(attn)
|
209 |
+
|
210 |
+
attn = self.attn_drop(attn)
|
211 |
+
|
212 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
213 |
+
x = self.proj(x)
|
214 |
+
x = self.proj_drop(x)
|
215 |
+
return x
|
216 |
+
|
217 |
+
|
218 |
+
class SwinTransformerBlock(nn.Module):
|
219 |
+
"""Swin Transformer Block.
|
220 |
+
Args:
|
221 |
+
dim (int): Number of input channels.
|
222 |
+
num_heads (int): Number of attention heads.
|
223 |
+
window_size (int): Window size.
|
224 |
+
shift_size (int): Shift size for SW-MSA.
|
225 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
226 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
227 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
228 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
229 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
230 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
231 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
232 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
233 |
+
"""
|
234 |
+
|
235 |
+
def __init__(
|
236 |
+
self,
|
237 |
+
dim,
|
238 |
+
num_heads,
|
239 |
+
window_size=7,
|
240 |
+
shift_size=0,
|
241 |
+
mlp_ratio=4.0,
|
242 |
+
qkv_bias=True,
|
243 |
+
qk_scale=None,
|
244 |
+
drop=0.0,
|
245 |
+
attn_drop=0.0,
|
246 |
+
drop_path=0.0,
|
247 |
+
act_layer=nn.GELU,
|
248 |
+
norm_layer=nn.LayerNorm,
|
249 |
+
):
|
250 |
+
super().__init__()
|
251 |
+
self.dim = dim
|
252 |
+
self.num_heads = num_heads
|
253 |
+
self.window_size = window_size
|
254 |
+
self.shift_size = shift_size
|
255 |
+
self.mlp_ratio = mlp_ratio
|
256 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
257 |
+
|
258 |
+
self.norm1 = norm_layer(dim)
|
259 |
+
self.attn = WindowAttention(
|
260 |
+
dim,
|
261 |
+
window_size=to_2tuple(self.window_size),
|
262 |
+
num_heads=num_heads,
|
263 |
+
qkv_bias=qkv_bias,
|
264 |
+
qk_scale=qk_scale,
|
265 |
+
attn_drop=attn_drop,
|
266 |
+
proj_drop=drop,
|
267 |
+
)
|
268 |
+
|
269 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
270 |
+
self.norm2 = norm_layer(dim)
|
271 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
272 |
+
self.mlp = Mlp(
|
273 |
+
in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop
|
274 |
+
)
|
275 |
+
|
276 |
+
self.H = None
|
277 |
+
self.W = None
|
278 |
+
|
279 |
+
def forward(self, x, mask_matrix):
|
280 |
+
"""Forward function.
|
281 |
+
Args:
|
282 |
+
x: Input feature, tensor size (B, H*W, C).
|
283 |
+
H, W: Spatial resolution of the input feature.
|
284 |
+
mask_matrix: Attention mask for cyclic shift.
|
285 |
+
"""
|
286 |
+
B, L, C = x.shape
|
287 |
+
H, W = self.H, self.W
|
288 |
+
assert L == H * W, "input feature has wrong size"
|
289 |
+
|
290 |
+
shortcut = x
|
291 |
+
x = self.norm1(x)
|
292 |
+
x = x.view(B, H, W, C)
|
293 |
+
|
294 |
+
# pad feature maps to multiples of window size
|
295 |
+
pad_l = pad_t = 0
|
296 |
+
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
297 |
+
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
298 |
+
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
299 |
+
_, Hp, Wp, _ = x.shape
|
300 |
+
|
301 |
+
# cyclic shift
|
302 |
+
if self.shift_size > 0:
|
303 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
304 |
+
attn_mask = mask_matrix
|
305 |
+
else:
|
306 |
+
shifted_x = x
|
307 |
+
attn_mask = None
|
308 |
+
|
309 |
+
# partition windows
|
310 |
+
x_windows = window_partition(
|
311 |
+
shifted_x, self.window_size
|
312 |
+
) # nW*B, window_size, window_size, C
|
313 |
+
x_windows = x_windows.view(
|
314 |
+
-1, self.window_size * self.window_size, C
|
315 |
+
) # nW*B, window_size*window_size, C
|
316 |
+
|
317 |
+
# W-MSA/SW-MSA
|
318 |
+
attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
|
319 |
+
|
320 |
+
# merge windows
|
321 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
322 |
+
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
|
323 |
+
|
324 |
+
# reverse cyclic shift
|
325 |
+
if self.shift_size > 0:
|
326 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
327 |
+
else:
|
328 |
+
x = shifted_x
|
329 |
+
|
330 |
+
if pad_r > 0 or pad_b > 0:
|
331 |
+
x = x[:, :H, :W, :].contiguous()
|
332 |
+
|
333 |
+
x = x.view(B, H * W, C)
|
334 |
+
|
335 |
+
# FFN
|
336 |
+
x = shortcut + self.drop_path(x)
|
337 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
338 |
+
|
339 |
+
return x
|
340 |
+
|
341 |
+
|
342 |
+
class PatchMerging(nn.Module):
|
343 |
+
"""Patch Merging Layer
|
344 |
+
Args:
|
345 |
+
dim (int): Number of input channels.
|
346 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
347 |
+
"""
|
348 |
+
|
349 |
+
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
350 |
+
super().__init__()
|
351 |
+
self.dim = dim
|
352 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
353 |
+
self.norm = norm_layer(4 * dim)
|
354 |
+
|
355 |
+
def forward(self, x, H, W):
|
356 |
+
"""Forward function.
|
357 |
+
Args:
|
358 |
+
x: Input feature, tensor size (B, H*W, C).
|
359 |
+
H, W: Spatial resolution of the input feature.
|
360 |
+
"""
|
361 |
+
B, L, C = x.shape
|
362 |
+
assert L == H * W, "input feature has wrong size"
|
363 |
+
|
364 |
+
x = x.view(B, H, W, C)
|
365 |
+
|
366 |
+
# padding
|
367 |
+
pad_input = (H % 2 == 1) or (W % 2 == 1)
|
368 |
+
if pad_input:
|
369 |
+
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
|
370 |
+
|
371 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
372 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
373 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
374 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
375 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
376 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
377 |
+
|
378 |
+
x = self.norm(x)
|
379 |
+
x = self.reduction(x)
|
380 |
+
|
381 |
+
return x
|
382 |
+
|
383 |
+
|
384 |
+
class BasicLayer(nn.Module):
|
385 |
+
"""A basic Swin Transformer layer for one stage.
|
386 |
+
Args:
|
387 |
+
dim (int): Number of feature channels
|
388 |
+
depth (int): Depths of this stage.
|
389 |
+
num_heads (int): Number of attention head.
|
390 |
+
window_size (int): Local window size. Default: 7.
|
391 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
392 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
393 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
394 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
395 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
396 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
397 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
398 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
399 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
400 |
+
"""
|
401 |
+
|
402 |
+
def __init__(
|
403 |
+
self,
|
404 |
+
dim,
|
405 |
+
depth,
|
406 |
+
num_heads,
|
407 |
+
window_size=7,
|
408 |
+
mlp_ratio=4.0,
|
409 |
+
qkv_bias=True,
|
410 |
+
qk_scale=None,
|
411 |
+
drop=0.0,
|
412 |
+
attn_drop=0.0,
|
413 |
+
drop_path=0.0,
|
414 |
+
norm_layer=nn.LayerNorm,
|
415 |
+
downsample=None,
|
416 |
+
use_checkpoint=False,
|
417 |
+
):
|
418 |
+
super().__init__()
|
419 |
+
self.window_size = window_size
|
420 |
+
self.shift_size = window_size // 2
|
421 |
+
self.depth = depth
|
422 |
+
self.use_checkpoint = use_checkpoint
|
423 |
+
|
424 |
+
# build blocks
|
425 |
+
self.blocks = nn.ModuleList(
|
426 |
+
[
|
427 |
+
SwinTransformerBlock(
|
428 |
+
dim=dim,
|
429 |
+
num_heads=num_heads,
|
430 |
+
window_size=window_size,
|
431 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
432 |
+
mlp_ratio=mlp_ratio,
|
433 |
+
qkv_bias=qkv_bias,
|
434 |
+
qk_scale=qk_scale,
|
435 |
+
drop=drop,
|
436 |
+
attn_drop=attn_drop,
|
437 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
438 |
+
norm_layer=norm_layer,
|
439 |
+
)
|
440 |
+
for i in range(depth)
|
441 |
+
]
|
442 |
+
)
|
443 |
+
|
444 |
+
# patch merging layer
|
445 |
+
if downsample is not None:
|
446 |
+
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
|
447 |
+
else:
|
448 |
+
self.downsample = None
|
449 |
+
|
450 |
+
def forward(self, x, H, W):
|
451 |
+
"""Forward function.
|
452 |
+
Args:
|
453 |
+
x: Input feature, tensor size (B, H*W, C).
|
454 |
+
H, W: Spatial resolution of the input feature.
|
455 |
+
"""
|
456 |
+
|
457 |
+
# calculate attention mask for SW-MSA
|
458 |
+
Hp = int(np.ceil(H / self.window_size)) * self.window_size
|
459 |
+
Wp = int(np.ceil(W / self.window_size)) * self.window_size
|
460 |
+
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
|
461 |
+
h_slices = (
|
462 |
+
slice(0, -self.window_size),
|
463 |
+
slice(-self.window_size, -self.shift_size),
|
464 |
+
slice(-self.shift_size, None),
|
465 |
+
)
|
466 |
+
w_slices = (
|
467 |
+
slice(0, -self.window_size),
|
468 |
+
slice(-self.window_size, -self.shift_size),
|
469 |
+
slice(-self.shift_size, None),
|
470 |
+
)
|
471 |
+
cnt = 0
|
472 |
+
for h in h_slices:
|
473 |
+
for w in w_slices:
|
474 |
+
img_mask[:, h, w, :] = cnt
|
475 |
+
cnt += 1
|
476 |
+
|
477 |
+
mask_windows = window_partition(
|
478 |
+
img_mask, self.window_size
|
479 |
+
) # nW, window_size, window_size, 1
|
480 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
481 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
482 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(
|
483 |
+
attn_mask == 0, float(0.0)
|
484 |
+
)
|
485 |
+
|
486 |
+
for blk in self.blocks:
|
487 |
+
blk.H, blk.W = H, W
|
488 |
+
if self.use_checkpoint:
|
489 |
+
x = checkpoint.checkpoint(blk, x, attn_mask)
|
490 |
+
else:
|
491 |
+
x = blk(x, attn_mask)
|
492 |
+
if self.downsample is not None:
|
493 |
+
x_down = self.downsample(x, H, W)
|
494 |
+
Wh, Ww = (H + 1) // 2, (W + 1) // 2
|
495 |
+
return x, H, W, x_down, Wh, Ww
|
496 |
+
else:
|
497 |
+
return x, H, W, x, H, W
|
498 |
+
|
499 |
+
|
500 |
+
class PatchEmbed(nn.Module):
|
501 |
+
"""Image to Patch Embedding
|
502 |
+
Args:
|
503 |
+
patch_size (int): Patch token size. Default: 4.
|
504 |
+
in_chans (int): Number of input image channels. Default: 3.
|
505 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
506 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
507 |
+
"""
|
508 |
+
|
509 |
+
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
510 |
+
super().__init__()
|
511 |
+
patch_size = to_2tuple(patch_size)
|
512 |
+
self.patch_size = patch_size
|
513 |
+
|
514 |
+
self.in_chans = in_chans
|
515 |
+
self.embed_dim = embed_dim
|
516 |
+
|
517 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
518 |
+
if norm_layer is not None:
|
519 |
+
self.norm = norm_layer(embed_dim)
|
520 |
+
else:
|
521 |
+
self.norm = None
|
522 |
+
|
523 |
+
def forward(self, x):
|
524 |
+
"""Forward function."""
|
525 |
+
# padding
|
526 |
+
_, _, H, W = x.size()
|
527 |
+
if W % self.patch_size[1] != 0:
|
528 |
+
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
|
529 |
+
if H % self.patch_size[0] != 0:
|
530 |
+
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
|
531 |
+
|
532 |
+
x = self.proj(x) # B C Wh Ww
|
533 |
+
if self.norm is not None:
|
534 |
+
Wh, Ww = x.size(2), x.size(3)
|
535 |
+
x = x.flatten(2).transpose(1, 2)
|
536 |
+
x = self.norm(x)
|
537 |
+
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
|
538 |
+
|
539 |
+
return x
|
540 |
+
|
541 |
+
|
542 |
+
class SwinTransformer(nn.Module):
|
543 |
+
"""Swin Transformer backbone.
|
544 |
+
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
545 |
+
https://arxiv.org/pdf/2103.14030
|
546 |
+
Args:
|
547 |
+
pretrain_img_size (int): Input image size for training the pretrained model,
|
548 |
+
used in absolute postion embedding. Default 224.
|
549 |
+
patch_size (int | tuple(int)): Patch size. Default: 4.
|
550 |
+
in_chans (int): Number of input image channels. Default: 3.
|
551 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
552 |
+
depths (tuple[int]): Depths of each Swin Transformer stage.
|
553 |
+
num_heads (tuple[int]): Number of attention head of each stage.
|
554 |
+
window_size (int): Window size. Default: 7.
|
555 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
556 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
557 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
|
558 |
+
drop_rate (float): Dropout rate.
|
559 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0.
|
560 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
|
561 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
562 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
|
563 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True.
|
564 |
+
out_indices (Sequence[int]): Output from which stages.
|
565 |
+
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
|
566 |
+
-1 means not freezing any parameters.
|
567 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
568 |
+
"""
|
569 |
+
|
570 |
+
def __init__(
|
571 |
+
self,
|
572 |
+
pretrain_img_size=224,
|
573 |
+
patch_size=4,
|
574 |
+
in_chans=3,
|
575 |
+
embed_dim=96,
|
576 |
+
depths=[2, 2, 6, 2],
|
577 |
+
num_heads=[3, 6, 12, 24],
|
578 |
+
window_size=7,
|
579 |
+
mlp_ratio=4.0,
|
580 |
+
qkv_bias=True,
|
581 |
+
qk_scale=None,
|
582 |
+
drop_rate=0.0,
|
583 |
+
attn_drop_rate=0.0,
|
584 |
+
drop_path_rate=0.2,
|
585 |
+
norm_layer=nn.LayerNorm,
|
586 |
+
ape=False,
|
587 |
+
patch_norm=True,
|
588 |
+
out_indices=(0, 1, 2, 3),
|
589 |
+
frozen_stages=-1,
|
590 |
+
use_checkpoint=False,
|
591 |
+
):
|
592 |
+
super().__init__()
|
593 |
+
|
594 |
+
self.pretrain_img_size = pretrain_img_size
|
595 |
+
self.num_layers = len(depths)
|
596 |
+
self.embed_dim = embed_dim
|
597 |
+
self.ape = ape
|
598 |
+
self.patch_norm = patch_norm
|
599 |
+
self.out_indices = out_indices
|
600 |
+
self.frozen_stages = frozen_stages
|
601 |
+
|
602 |
+
# split image into non-overlapping patches
|
603 |
+
self.patch_embed = PatchEmbed(
|
604 |
+
patch_size=patch_size,
|
605 |
+
in_chans=in_chans,
|
606 |
+
embed_dim=embed_dim,
|
607 |
+
norm_layer=norm_layer if self.patch_norm else None,
|
608 |
+
)
|
609 |
+
|
610 |
+
# absolute position embedding
|
611 |
+
if self.ape:
|
612 |
+
pretrain_img_size = to_2tuple(pretrain_img_size)
|
613 |
+
patch_size = to_2tuple(patch_size)
|
614 |
+
patches_resolution = [
|
615 |
+
pretrain_img_size[0] // patch_size[0],
|
616 |
+
pretrain_img_size[1] // patch_size[1],
|
617 |
+
]
|
618 |
+
|
619 |
+
self.absolute_pos_embed = nn.Parameter(
|
620 |
+
torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1])
|
621 |
+
)
|
622 |
+
trunc_normal_(self.absolute_pos_embed, std=0.02)
|
623 |
+
|
624 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
625 |
+
|
626 |
+
# stochastic depth
|
627 |
+
dpr = [
|
628 |
+
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
|
629 |
+
] # stochastic depth decay rule
|
630 |
+
|
631 |
+
# build layers
|
632 |
+
self.layers = nn.ModuleList()
|
633 |
+
for i_layer in range(self.num_layers):
|
634 |
+
layer = BasicLayer(
|
635 |
+
dim=int(embed_dim * 2 ** i_layer),
|
636 |
+
depth=depths[i_layer],
|
637 |
+
num_heads=num_heads[i_layer],
|
638 |
+
window_size=window_size,
|
639 |
+
mlp_ratio=mlp_ratio,
|
640 |
+
qkv_bias=qkv_bias,
|
641 |
+
qk_scale=qk_scale,
|
642 |
+
drop=drop_rate,
|
643 |
+
attn_drop=attn_drop_rate,
|
644 |
+
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
|
645 |
+
norm_layer=norm_layer,
|
646 |
+
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
647 |
+
use_checkpoint=use_checkpoint,
|
648 |
+
)
|
649 |
+
self.layers.append(layer)
|
650 |
+
|
651 |
+
num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
|
652 |
+
self.num_features = num_features
|
653 |
+
|
654 |
+
# add a norm layer for each output
|
655 |
+
for i_layer in out_indices:
|
656 |
+
layer = norm_layer(num_features[i_layer])
|
657 |
+
layer_name = f"norm{i_layer}"
|
658 |
+
self.add_module(layer_name, layer)
|
659 |
+
|
660 |
+
self._freeze_stages()
|
661 |
+
|
662 |
+
def _freeze_stages(self):
|
663 |
+
if self.frozen_stages >= 0:
|
664 |
+
self.patch_embed.eval()
|
665 |
+
for param in self.patch_embed.parameters():
|
666 |
+
param.requires_grad = False
|
667 |
+
|
668 |
+
if self.frozen_stages >= 1 and self.ape:
|
669 |
+
self.absolute_pos_embed.requires_grad = False
|
670 |
+
|
671 |
+
if self.frozen_stages >= 2:
|
672 |
+
self.pos_drop.eval()
|
673 |
+
for i in range(0, self.frozen_stages - 1):
|
674 |
+
m = self.layers[i]
|
675 |
+
m.eval()
|
676 |
+
for param in m.parameters():
|
677 |
+
param.requires_grad = False
|
678 |
+
|
679 |
+
def init_weights(self, pretrained=None):
|
680 |
+
"""Initialize the weights in backbone.
|
681 |
+
Args:
|
682 |
+
pretrained (str, optional): Path to pre-trained weights.
|
683 |
+
Defaults to None.
|
684 |
+
"""
|
685 |
+
|
686 |
+
def _init_weights(m):
|
687 |
+
if isinstance(m, nn.Linear):
|
688 |
+
trunc_normal_(m.weight, std=0.02)
|
689 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
690 |
+
nn.init.constant_(m.bias, 0)
|
691 |
+
elif isinstance(m, nn.LayerNorm):
|
692 |
+
nn.init.constant_(m.bias, 0)
|
693 |
+
nn.init.constant_(m.weight, 1.0)
|
694 |
+
|
695 |
+
def forward(self, x):
|
696 |
+
"""Forward function."""
|
697 |
+
x = self.patch_embed(x)
|
698 |
+
|
699 |
+
Wh, Ww = x.size(2), x.size(3)
|
700 |
+
if self.ape:
|
701 |
+
# interpolate the position embedding to the corresponding size
|
702 |
+
absolute_pos_embed = F.interpolate(
|
703 |
+
self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic"
|
704 |
+
)
|
705 |
+
x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C
|
706 |
+
else:
|
707 |
+
x = x.flatten(2).transpose(1, 2)
|
708 |
+
x = self.pos_drop(x)
|
709 |
+
|
710 |
+
outs = {}
|
711 |
+
for i in range(self.num_layers):
|
712 |
+
layer = self.layers[i]
|
713 |
+
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
|
714 |
+
|
715 |
+
if i in self.out_indices:
|
716 |
+
norm_layer = getattr(self, f"norm{i}")
|
717 |
+
x_out = norm_layer(x_out)
|
718 |
+
|
719 |
+
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
|
720 |
+
outs["res{}".format(i + 2)] = out
|
721 |
+
|
722 |
+
return outs
|
723 |
+
|
724 |
+
def train(self, mode=True):
|
725 |
+
"""Convert the model into training mode while keep layers freezed."""
|
726 |
+
super(SwinTransformer, self).train(mode)
|
727 |
+
self._freeze_stages()
|
models/post_process.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torchvision.ops.boxes import batched_nms
|
4 |
+
|
5 |
+
from util import box_ops
|
6 |
+
|
7 |
+
|
8 |
+
class CondNMSPostProcess(nn.Module):
|
9 |
+
def __init__(self, num_queries):
|
10 |
+
super(CondNMSPostProcess, self).__init__()
|
11 |
+
self.num_queries = num_queries
|
12 |
+
|
13 |
+
@torch.no_grad()
|
14 |
+
def forward(self, outputs, target_sizes, pred_names, mask_infos):
|
15 |
+
out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes']
|
16 |
+
bs = len(out_logits)
|
17 |
+
results = []
|
18 |
+
|
19 |
+
for b in range(bs):
|
20 |
+
b_scores, b_boxes, b_names = [], [], []
|
21 |
+
b_start_id, b_end_id = [], []
|
22 |
+
name = []
|
23 |
+
for name_i in pred_names[b]:
|
24 |
+
name.append([name_i] * self.num_queries)
|
25 |
+
start_id, end_id = [], []
|
26 |
+
for (start, end) in mask_infos[b].keys():
|
27 |
+
start_id.append([start] * self.num_queries)
|
28 |
+
end_id.append([end] * self.num_queries)
|
29 |
+
prob = out_logits[b][0][:, -1:].sigmoid()
|
30 |
+
if len(prob) == 0:
|
31 |
+
continue
|
32 |
+
boxes = box_ops.box_cxcywh_to_xyxy(out_bbox[b][0])
|
33 |
+
img_h, img_w = target_sizes[b]
|
34 |
+
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=0)
|
35 |
+
boxes = boxes * scale_fct[None, :]
|
36 |
+
num_patch = len(prob) // self.num_queries
|
37 |
+
prob = prob.view(num_patch, self.num_queries, -1)
|
38 |
+
boxes = boxes.view(num_patch, self.num_queries, -1)
|
39 |
+
for t in range(num_patch):
|
40 |
+
ind = prob[t].squeeze(1).topk(100).indices
|
41 |
+
prob_prenms = prob[t][ind]
|
42 |
+
box_prenms = boxes[t][ind]
|
43 |
+
lbl_prenms = torch.zeros_like(prob_prenms)
|
44 |
+
nms_ind = batched_nms(box_prenms, prob_prenms[:, 0], lbl_prenms[:, 0], 0.7)[:20]
|
45 |
+
b_scores.append(prob_prenms[nms_ind])
|
46 |
+
b_boxes.append(box_prenms[nms_ind])
|
47 |
+
|
48 |
+
b_names += [name[t][int(i)] for i in nms_ind]
|
49 |
+
b_start_id += [start_id[t][int(i)] for i in nms_ind]
|
50 |
+
b_end_id += [end_id[t][int(i)] for i in nms_ind]
|
51 |
+
b_scores = torch.cat(b_scores).cpu().squeeze(1)
|
52 |
+
b_boxes = torch.cat(b_boxes).cpu()
|
53 |
+
out = {'scores': b_scores, 'boxes': b_boxes, 'names': b_names,
|
54 |
+
'start_id': b_start_id, 'end_id': b_end_id}
|
55 |
+
results.append(out)
|
56 |
+
return results
|
models/transformer.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torchvision.ops.boxes import batched_nms
|
3 |
+
|
4 |
+
from util.box_ops import box_cxcywh_to_xyxy
|
5 |
+
|
6 |
+
from .deformable_detr.deformable_transformer import DeformableTransformer
|
7 |
+
|
8 |
+
|
9 |
+
class OVTransformer(DeformableTransformer):
|
10 |
+
def __init__(self, d_model=256, nhead=8,
|
11 |
+
num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=1024, dropout=0.1,
|
12 |
+
activation="relu", return_intermediate_dec=False,
|
13 |
+
num_feature_levels=4, dec_n_points=4, enc_n_points=4,
|
14 |
+
two_stage=False, two_stage_num_proposals=300,
|
15 |
+
assign_first_stage=False):
|
16 |
+
super().__init__(d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout,
|
17 |
+
activation, return_intermediate_dec, num_feature_levels, dec_n_points, enc_n_points,
|
18 |
+
two_stage, two_stage_num_proposals, assign_first_stage)
|
19 |
+
|
20 |
+
def forward(self, srcs, masks, pos_embeds, query_embed=None, llm_feat=None, num_patch=1):
|
21 |
+
assert self.two_stage or query_embed is not None
|
22 |
+
|
23 |
+
# prepare input for encoder
|
24 |
+
src_flatten = []
|
25 |
+
mask_flatten = []
|
26 |
+
lvl_pos_embed_flatten = []
|
27 |
+
spatial_shapes = []
|
28 |
+
for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
|
29 |
+
bs, c, h, w = src.shape
|
30 |
+
spatial_shape = (h, w)
|
31 |
+
spatial_shapes.append(spatial_shape)
|
32 |
+
src = src.flatten(2).transpose(1, 2)
|
33 |
+
mask = mask.flatten(1)
|
34 |
+
pos_embed = pos_embed.flatten(2).transpose(1, 2)
|
35 |
+
lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
|
36 |
+
lvl_pos_embed_flatten.append(lvl_pos_embed)
|
37 |
+
src_flatten.append(src)
|
38 |
+
mask_flatten.append(mask)
|
39 |
+
src_flatten = torch.cat(src_flatten, 1)
|
40 |
+
mask_flatten = torch.cat(mask_flatten, 1)
|
41 |
+
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
|
42 |
+
spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device)
|
43 |
+
level_start_index = torch.cat((spatial_shapes.new_zeros((1, )), spatial_shapes.prod(1).cumsum(0)[:-1]))
|
44 |
+
valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)
|
45 |
+
|
46 |
+
# encoder
|
47 |
+
memory = self.encoder(src_flatten, spatial_shapes, level_start_index, valid_ratios,
|
48 |
+
lvl_pos_embed_flatten, mask_flatten)
|
49 |
+
|
50 |
+
# prepare input for decoder
|
51 |
+
bs, _, c = memory.shape
|
52 |
+
if self.two_stage:
|
53 |
+
output_memory, output_proposals, level_ids = \
|
54 |
+
self.gen_encoder_output_proposals(memory, mask_flatten, spatial_shapes)
|
55 |
+
|
56 |
+
# hack implementation for two-stage Deformable DETR
|
57 |
+
enc_outputs_class = self.decoder.class_embed[self.decoder.num_layers](output_memory)
|
58 |
+
enc_outputs_coord_unact = self.decoder.bbox_embed[self.decoder.num_layers](output_memory) + output_proposals
|
59 |
+
|
60 |
+
topk = self.two_stage_num_proposals
|
61 |
+
proposal_logit = enc_outputs_class[..., 0]
|
62 |
+
|
63 |
+
if self.assign_first_stage:
|
64 |
+
proposal_boxes = box_cxcywh_to_xyxy(enc_outputs_coord_unact.sigmoid().float()).clamp(0, 1)
|
65 |
+
topk_proposals = []
|
66 |
+
for b in range(bs):
|
67 |
+
prop_boxes_b = proposal_boxes[b]
|
68 |
+
prop_logits_b = proposal_logit[b]
|
69 |
+
|
70 |
+
# pre-nms per-level topk
|
71 |
+
pre_nms_topk = 1000
|
72 |
+
pre_nms_inds = []
|
73 |
+
for lvl in range(len(spatial_shapes)):
|
74 |
+
lvl_mask = level_ids == lvl
|
75 |
+
pre_nms_inds.append(torch.topk(prop_logits_b.sigmoid() * lvl_mask, pre_nms_topk)[1])
|
76 |
+
pre_nms_inds = torch.cat(pre_nms_inds)
|
77 |
+
|
78 |
+
# nms on topk indices
|
79 |
+
post_nms_inds = batched_nms(prop_boxes_b[pre_nms_inds],
|
80 |
+
prop_logits_b[pre_nms_inds],
|
81 |
+
level_ids[pre_nms_inds], 0.9)
|
82 |
+
keep_inds = pre_nms_inds[post_nms_inds]
|
83 |
+
|
84 |
+
if len(keep_inds) < self.two_stage_num_proposals:
|
85 |
+
print(f'[WARNING] nms proposals ({len(keep_inds)}) < {self.two_stage_num_proposals}')
|
86 |
+
keep_inds = torch.topk(proposal_logit[b], topk)[1]
|
87 |
+
|
88 |
+
# keep top Q/L indices for L levels
|
89 |
+
q_per_l = topk // len(spatial_shapes)
|
90 |
+
level_shapes = torch.arange(len(spatial_shapes), device=level_ids.device)[:, None]
|
91 |
+
is_level_ordered = level_ids[keep_inds][None] == level_shapes
|
92 |
+
keep_inds_mask = is_level_ordered & (is_level_ordered.cumsum(1) <= q_per_l) # LS
|
93 |
+
keep_inds_mask = keep_inds_mask.any(0) # S
|
94 |
+
|
95 |
+
# pad to Q indices (might let ones filtered from pre-nms sneak by...
|
96 |
+
# unlikely because we pick high conf anyways)
|
97 |
+
if keep_inds_mask.sum() < topk:
|
98 |
+
num_to_add = topk - keep_inds_mask.sum()
|
99 |
+
pad_inds = (~keep_inds_mask).nonzero()[:num_to_add]
|
100 |
+
keep_inds_mask[pad_inds] = True
|
101 |
+
|
102 |
+
# index
|
103 |
+
keep_inds_topk = keep_inds[keep_inds_mask]
|
104 |
+
topk_proposals.append(keep_inds_topk)
|
105 |
+
topk_proposals = torch.stack(topk_proposals)
|
106 |
+
else:
|
107 |
+
topk_proposals = torch.topk(proposal_logit, topk, dim=1)[1]
|
108 |
+
|
109 |
+
topk_coords_unact = torch.gather(enc_outputs_coord_unact, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4))
|
110 |
+
topk_coords_unact = topk_coords_unact.detach()
|
111 |
+
reference_points = topk_coords_unact.sigmoid()
|
112 |
+
init_reference_out = reference_points
|
113 |
+
pos_trans_out = self.pos_trans_norm(self.pos_trans(self.get_proposal_pos_embed(topk_coords_unact)))
|
114 |
+
query_embed, tgt = torch.split(pos_trans_out, c, dim=2)
|
115 |
+
|
116 |
+
num_queries = query_embed.shape[1]
|
117 |
+
query_embed = query_embed.repeat(1, num_patch, 1)
|
118 |
+
tgt = tgt.repeat(1, num_patch, 1)
|
119 |
+
topk_feats = torch.stack([output_memory[b][topk_proposals[b]] for b in range(bs)]).detach()
|
120 |
+
topk_feats = topk_feats.repeat(1, num_patch, 1)
|
121 |
+
tgt = tgt + self.pix_trans_norm(self.pix_trans(topk_feats))
|
122 |
+
reference_points = reference_points.repeat(1, num_patch, 1)
|
123 |
+
init_reference_out = init_reference_out.repeat(1, num_patch, 1)
|
124 |
+
|
125 |
+
llm_feat = llm_feat.repeat_interleave(num_queries, 1)
|
126 |
+
tgt = tgt + llm_feat
|
127 |
+
else:
|
128 |
+
raise NotImplementedError
|
129 |
+
query_embed, tgt = torch.split(query_embed, c, dim=1)
|
130 |
+
query_embed = query_embed.unsqueeze(0).expand(bs, -1, -1)
|
131 |
+
tgt = tgt.unsqueeze(0).expand(bs, -1, -1)
|
132 |
+
reference_points = self.reference_points(query_embed).sigmoid()
|
133 |
+
init_reference_out = reference_points
|
134 |
+
# decoder mask
|
135 |
+
decoder_mask = (
|
136 |
+
torch.ones(
|
137 |
+
num_queries * num_patch,
|
138 |
+
num_queries * num_patch,
|
139 |
+
device=query_embed.device,
|
140 |
+
) * float("-inf")
|
141 |
+
)
|
142 |
+
for i in range(num_patch):
|
143 |
+
decoder_mask[
|
144 |
+
i * num_queries : (i + 1) * num_queries,
|
145 |
+
i * num_queries : (i + 1) * num_queries,
|
146 |
+
] = 0
|
147 |
+
|
148 |
+
# decoder
|
149 |
+
hs, inter_references = self.decoder(tgt, reference_points, memory,
|
150 |
+
spatial_shapes, level_start_index, valid_ratios,
|
151 |
+
query_embed, mask_flatten, tgt_mask=decoder_mask)
|
152 |
+
|
153 |
+
inter_references_out = inter_references
|
154 |
+
if self.two_stage:
|
155 |
+
return (hs,
|
156 |
+
init_reference_out,
|
157 |
+
inter_references_out,
|
158 |
+
enc_outputs_class,
|
159 |
+
enc_outputs_coord_unact,
|
160 |
+
output_proposals.sigmoid())
|
161 |
+
return hs, init_reference_out, inter_references_out, None, None, None
|
162 |
+
|
163 |
+
|
164 |
+
def build_ov_transformer(args):
|
165 |
+
return OVTransformer(
|
166 |
+
d_model=args.hidden_dim,
|
167 |
+
nhead=args.nheads,
|
168 |
+
num_encoder_layers=args.enc_layers,
|
169 |
+
num_decoder_layers=args.dec_layers,
|
170 |
+
dim_feedforward=args.dim_feedforward,
|
171 |
+
dropout=args.dropout,
|
172 |
+
activation="relu",
|
173 |
+
return_intermediate_dec=True,
|
174 |
+
num_feature_levels=args.num_feature_levels,
|
175 |
+
dec_n_points=args.dec_n_points,
|
176 |
+
enc_n_points=args.enc_n_points,
|
177 |
+
two_stage=args.two_stage,
|
178 |
+
two_stage_num_proposals=args.num_queries,
|
179 |
+
assign_first_stage=args.assign_first_stage)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Pillow
|
2 |
+
timm==0.4.12
|
3 |
+
torch
|
4 |
+
torchvision
|
5 |
+
salesforce-lavis
|
6 |
+
transformers
|
setup.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import os
|
3 |
+
import subprocess
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from setuptools import find_packages, setup
|
7 |
+
from torch.utils.cpp_extension import CUDA_HOME, CppExtension, CUDAExtension
|
8 |
+
|
9 |
+
cwd = os.path.dirname(os.path.abspath(__file__))
|
10 |
+
|
11 |
+
|
12 |
+
sha = "Unknown"
|
13 |
+
try:
|
14 |
+
sha = subprocess.check_output(["git", "rev-parse", "HEAD"], cwd=cwd).decode("ascii").strip()
|
15 |
+
except Exception:
|
16 |
+
pass
|
17 |
+
|
18 |
+
|
19 |
+
requirements = ["torch", "torchvision"]
|
20 |
+
|
21 |
+
torch_ver = [int(x) for x in torch.__version__.split(".")[:2]]
|
22 |
+
|
23 |
+
|
24 |
+
def get_extensions():
|
25 |
+
this_dir = os.path.dirname(os.path.abspath(__file__))
|
26 |
+
extensions_dir = os.path.join(this_dir, "csrc")
|
27 |
+
|
28 |
+
main_source = os.path.join(extensions_dir, "vision.cpp")
|
29 |
+
sources = glob.glob(os.path.join(extensions_dir, "**", "*.cpp"))
|
30 |
+
source_cuda = glob.glob(os.path.join(extensions_dir, "**", "*.cu")) + glob.glob(
|
31 |
+
os.path.join(extensions_dir, "*.cu")
|
32 |
+
)
|
33 |
+
|
34 |
+
sources = [main_source] + sources
|
35 |
+
|
36 |
+
extension = CppExtension
|
37 |
+
|
38 |
+
extra_compile_args = {"cxx": []}
|
39 |
+
define_macros = []
|
40 |
+
|
41 |
+
if torch.cuda.is_available() and CUDA_HOME is not None:
|
42 |
+
print("Compiling with CUDA")
|
43 |
+
extension = CUDAExtension
|
44 |
+
sources += source_cuda
|
45 |
+
define_macros += [("WITH_CUDA", None)]
|
46 |
+
extra_compile_args["nvcc"] = [
|
47 |
+
"-DCUDA_HAS_FP16=1",
|
48 |
+
"-D__CUDA_NO_HALF_OPERATORS__",
|
49 |
+
"-D__CUDA_NO_HALF_CONVERSIONS__",
|
50 |
+
"-D__CUDA_NO_HALF2_OPERATORS__",
|
51 |
+
]
|
52 |
+
else:
|
53 |
+
print("Compiling without CUDA")
|
54 |
+
define_macros += [("WITH_HIP", None)]
|
55 |
+
extra_compile_args["nvcc"] = []
|
56 |
+
return None
|
57 |
+
|
58 |
+
sources = [os.path.join(extensions_dir, s) for s in sources]
|
59 |
+
include_dirs = [extensions_dir]
|
60 |
+
|
61 |
+
ext_modules = [
|
62 |
+
extension(
|
63 |
+
"csrc._C",
|
64 |
+
sources,
|
65 |
+
include_dirs=include_dirs,
|
66 |
+
define_macros=define_macros,
|
67 |
+
extra_compile_args=extra_compile_args,
|
68 |
+
)
|
69 |
+
]
|
70 |
+
|
71 |
+
return ext_modules
|
72 |
+
|
73 |
+
|
74 |
+
def parse_requirements(fname="requirements.txt", with_version=False):
|
75 |
+
"""Parse the package dependencies listed in a requirements file but strips
|
76 |
+
specific versioning information.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
fname (str): path to requirements file
|
80 |
+
with_version (bool, default=False): if True include version specs
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
List[str]: list of requirements items
|
84 |
+
|
85 |
+
CommandLine:
|
86 |
+
python -c "import setup; print(setup.parse_requirements())"
|
87 |
+
"""
|
88 |
+
import re
|
89 |
+
import sys
|
90 |
+
from os.path import exists
|
91 |
+
|
92 |
+
require_fpath = fname
|
93 |
+
|
94 |
+
def parse_line(line):
|
95 |
+
"""Parse information from a line in a requirements text file."""
|
96 |
+
if line.startswith("-r "):
|
97 |
+
# Allow specifying requirements in other files
|
98 |
+
target = line.split(" ")[1]
|
99 |
+
for info in parse_require_file(target):
|
100 |
+
yield info
|
101 |
+
else:
|
102 |
+
info = {"line": line}
|
103 |
+
if line.startswith("-e "):
|
104 |
+
info["package"] = line.split("#egg=")[1]
|
105 |
+
elif "@git+" in line:
|
106 |
+
info["package"] = line
|
107 |
+
else:
|
108 |
+
# Remove versioning from the package
|
109 |
+
pat = "(" + "|".join([">=", "==", ">"]) + ")"
|
110 |
+
parts = re.split(pat, line, maxsplit=1)
|
111 |
+
parts = [p.strip() for p in parts]
|
112 |
+
|
113 |
+
info["package"] = parts[0]
|
114 |
+
if len(parts) > 1:
|
115 |
+
op, rest = parts[1:]
|
116 |
+
if ";" in rest:
|
117 |
+
# Handle platform specific dependencies
|
118 |
+
# http://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-platform-specific-dependencies
|
119 |
+
version, platform_deps = map(str.strip, rest.split(";"))
|
120 |
+
info["platform_deps"] = platform_deps
|
121 |
+
else:
|
122 |
+
version = rest # NOQA
|
123 |
+
info["version"] = (op, version)
|
124 |
+
yield info
|
125 |
+
|
126 |
+
def parse_require_file(fpath):
|
127 |
+
with open(fpath, "r") as f:
|
128 |
+
for line in f.readlines():
|
129 |
+
line = line.strip()
|
130 |
+
if line and not line.startswith("#"):
|
131 |
+
for info in parse_line(line):
|
132 |
+
yield info
|
133 |
+
|
134 |
+
def gen_packages_items():
|
135 |
+
if exists(require_fpath):
|
136 |
+
for info in parse_require_file(require_fpath):
|
137 |
+
parts = [info["package"]]
|
138 |
+
if with_version and "version" in info:
|
139 |
+
parts.extend(info["version"])
|
140 |
+
if not sys.version.startswith("3.4"):
|
141 |
+
# apparently package_deps are broken in 3.4
|
142 |
+
platform_deps = info.get("platform_deps")
|
143 |
+
if platform_deps is not None:
|
144 |
+
parts.append(";" + platform_deps)
|
145 |
+
item = "".join(parts)
|
146 |
+
yield item
|
147 |
+
|
148 |
+
packages = list(gen_packages_items())
|
149 |
+
return packages
|
150 |
+
|
151 |
+
|
152 |
+
if __name__ == "__main__":
|
153 |
+
setup(
|
154 |
+
name="csrc",
|
155 |
+
version="0.0.1",
|
156 |
+
author="",
|
157 |
+
url="",
|
158 |
+
description="",
|
159 |
+
license="",
|
160 |
+
install_requires=parse_requirements("requirements.txt"),
|
161 |
+
packages=find_packages(),
|
162 |
+
ext_modules=get_extensions(),
|
163 |
+
cmdclass={"build_ext": torch.utils.cpp_extension.BuildExtension},
|
164 |
+
)
|
util/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Deformable DETR
|
3 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------
|
6 |
+
# Modified from DETR (https://github.com/facebookresearch/detr)
|
7 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
8 |
+
# ------------------------------------------------------------------------
|
util/box_ops.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Deformable DETR
|
3 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------
|
6 |
+
# Modified from DETR (https://github.com/facebookresearch/detr)
|
7 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
8 |
+
# ------------------------------------------------------------------------
|
9 |
+
|
10 |
+
"""
|
11 |
+
Utilities for bounding box manipulation and GIoU.
|
12 |
+
"""
|
13 |
+
import torch
|
14 |
+
from torchvision.ops.boxes import box_area
|
15 |
+
|
16 |
+
|
17 |
+
def box_cxcywh_to_xyxy(x):
|
18 |
+
x_c, y_c, w, h = x.unbind(-1)
|
19 |
+
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
|
20 |
+
(x_c + 0.5 * w), (y_c + 0.5 * h)]
|
21 |
+
return torch.stack(b, dim=-1)
|
22 |
+
|
23 |
+
|
24 |
+
def box_xyxy_to_cxcywh(x):
|
25 |
+
x0, y0, x1, y1 = x.unbind(-1)
|
26 |
+
b = [(x0 + x1) / 2, (y0 + y1) / 2,
|
27 |
+
(x1 - x0), (y1 - y0)]
|
28 |
+
return torch.stack(b, dim=-1)
|
29 |
+
|
30 |
+
|
31 |
+
# modified from torchvision to also return the union
|
32 |
+
def box_iou(boxes1, boxes2):
|
33 |
+
area1 = box_area(boxes1)
|
34 |
+
area2 = box_area(boxes2)
|
35 |
+
|
36 |
+
lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
|
37 |
+
rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
|
38 |
+
|
39 |
+
wh = (rb - lt).clamp(min=0) # [N,M,2]
|
40 |
+
inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
|
41 |
+
|
42 |
+
union = area1[:, None] + area2 - inter
|
43 |
+
|
44 |
+
iou = inter / union
|
45 |
+
return iou, union
|
46 |
+
|
47 |
+
|
48 |
+
def generalized_box_iou(boxes1, boxes2):
|
49 |
+
"""
|
50 |
+
Generalized IoU from https://giou.stanford.edu/
|
51 |
+
|
52 |
+
The boxes should be in [x0, y0, x1, y1] format
|
53 |
+
|
54 |
+
Returns a [N, M] pairwise matrix, where N = len(boxes1)
|
55 |
+
and M = len(boxes2)
|
56 |
+
"""
|
57 |
+
# degenerate boxes gives inf / nan results
|
58 |
+
# so do an early check
|
59 |
+
assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
|
60 |
+
assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
|
61 |
+
iou, union = box_iou(boxes1, boxes2)
|
62 |
+
|
63 |
+
lt = torch.min(boxes1[:, None, :2], boxes2[:, :2])
|
64 |
+
rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
|
65 |
+
|
66 |
+
wh = (rb - lt).clamp(min=0) # [N,M,2]
|
67 |
+
area = wh[:, :, 0] * wh[:, :, 1]
|
68 |
+
|
69 |
+
return iou - (area - union) / area
|
70 |
+
|
71 |
+
|
72 |
+
def masks_to_boxes(masks):
|
73 |
+
"""Compute the bounding boxes around the provided masks
|
74 |
+
|
75 |
+
The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions.
|
76 |
+
|
77 |
+
Returns a [N, 4] tensors, with the boxes in xyxy format
|
78 |
+
"""
|
79 |
+
if masks.numel() == 0:
|
80 |
+
return torch.zeros((0, 4), device=masks.device)
|
81 |
+
|
82 |
+
h, w = masks.shape[-2:]
|
83 |
+
|
84 |
+
y = torch.arange(0, h, dtype=torch.float)
|
85 |
+
x = torch.arange(0, w, dtype=torch.float)
|
86 |
+
y, x = torch.meshgrid(y, x)
|
87 |
+
|
88 |
+
x_mask = (masks * x.unsqueeze(0))
|
89 |
+
x_max = x_mask.flatten(1).max(-1)[0]
|
90 |
+
x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
|
91 |
+
|
92 |
+
y_mask = (masks * y.unsqueeze(0))
|
93 |
+
y_max = y_mask.flatten(1).max(-1)[0]
|
94 |
+
y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
|
95 |
+
|
96 |
+
return torch.stack([x_min, y_min, x_max, y_max], 1)
|
util/misc.py
ADDED
@@ -0,0 +1,520 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Deformable DETR
|
3 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------
|
6 |
+
# Modified from DETR (https://github.com/facebookresearch/detr)
|
7 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
8 |
+
# ------------------------------------------------------------------------
|
9 |
+
|
10 |
+
"""
|
11 |
+
Misc functions, including distributed helpers.
|
12 |
+
|
13 |
+
Mostly copy-paste from torchvision references.
|
14 |
+
"""
|
15 |
+
import os
|
16 |
+
import subprocess
|
17 |
+
import time
|
18 |
+
from collections import defaultdict, deque
|
19 |
+
import datetime
|
20 |
+
import pickle
|
21 |
+
from typing import Optional, List
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.nn as nn
|
25 |
+
import torch.distributed as dist
|
26 |
+
from torch import Tensor
|
27 |
+
|
28 |
+
# needed due to empty tensor bug in pytorch and torchvision 0.5
|
29 |
+
import torchvision
|
30 |
+
if float(torchvision.__version__.split('.')[0]) == 0 and\
|
31 |
+
float(torchvision.__version__.split('.')[1]) < 5:
|
32 |
+
import math
|
33 |
+
from torchvision.ops.misc import _NewEmptyTensorOp
|
34 |
+
def _check_size_scale_factor(dim, size, scale_factor):
|
35 |
+
# type: (int, Optional[List[int]], Optional[float]) -> None
|
36 |
+
if size is None and scale_factor is None:
|
37 |
+
raise ValueError("either size or scale_factor should be defined")
|
38 |
+
if size is not None and scale_factor is not None:
|
39 |
+
raise ValueError("only one of size or scale_factor should be defined")
|
40 |
+
if not (scale_factor is not None and len(scale_factor) != dim):
|
41 |
+
raise ValueError(
|
42 |
+
"scale_factor shape must match input shape. "
|
43 |
+
"Input is {}D, scale_factor size is {}".format(dim, len(scale_factor))
|
44 |
+
)
|
45 |
+
def _output_size(dim, input, size, scale_factor):
|
46 |
+
# type: (int, Tensor, Optional[List[int]], Optional[float]) -> List[int]
|
47 |
+
assert dim == 2
|
48 |
+
_check_size_scale_factor(dim, size, scale_factor)
|
49 |
+
if size is not None:
|
50 |
+
return size
|
51 |
+
# if dim is not 2 or scale_factor is iterable use _ntuple instead of concat
|
52 |
+
assert scale_factor is not None and isinstance(scale_factor, (int, float))
|
53 |
+
scale_factors = [scale_factor, scale_factor]
|
54 |
+
# math.floor might return float in py2.7
|
55 |
+
return [
|
56 |
+
int(math.floor(input.size(i + 2) * scale_factors[i])) for i in range(dim)
|
57 |
+
]
|
58 |
+
elif float(torchvision.__version__.split('.')[0]) == 0 and\
|
59 |
+
float(torchvision.__version__.split('.')[1]) < 7:
|
60 |
+
from torchvision.ops import _new_empty_tensor
|
61 |
+
from torchvision.ops.misc import _output_size
|
62 |
+
|
63 |
+
|
64 |
+
class SmoothedValue(object):
|
65 |
+
"""Track a series of values and provide access to smoothed values over a
|
66 |
+
window or the global series average.
|
67 |
+
"""
|
68 |
+
|
69 |
+
def __init__(self, window_size=20, fmt=None):
|
70 |
+
if fmt is None:
|
71 |
+
fmt = "{median:.4f} ({global_avg:.4f})"
|
72 |
+
self.deque = deque(maxlen=window_size)
|
73 |
+
self.total = 0.0
|
74 |
+
self.count = 0
|
75 |
+
self.fmt = fmt
|
76 |
+
|
77 |
+
def update(self, value, n=1):
|
78 |
+
self.deque.append(value)
|
79 |
+
self.count += n
|
80 |
+
self.total += value * n
|
81 |
+
|
82 |
+
def synchronize_between_processes(self):
|
83 |
+
"""
|
84 |
+
Warning: does not synchronize the deque!
|
85 |
+
"""
|
86 |
+
if not is_dist_avail_and_initialized():
|
87 |
+
return
|
88 |
+
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
|
89 |
+
dist.barrier()
|
90 |
+
dist.all_reduce(t)
|
91 |
+
t = t.tolist()
|
92 |
+
self.count = int(t[0])
|
93 |
+
self.total = t[1]
|
94 |
+
|
95 |
+
@property
|
96 |
+
def median(self):
|
97 |
+
d = torch.tensor(list(self.deque))
|
98 |
+
return d.median().item()
|
99 |
+
|
100 |
+
@property
|
101 |
+
def avg(self):
|
102 |
+
d = torch.tensor(list(self.deque), dtype=torch.float32)
|
103 |
+
return d.mean().item()
|
104 |
+
|
105 |
+
@property
|
106 |
+
def global_avg(self):
|
107 |
+
return self.total / self.count
|
108 |
+
|
109 |
+
@property
|
110 |
+
def max(self):
|
111 |
+
return max(self.deque)
|
112 |
+
|
113 |
+
@property
|
114 |
+
def value(self):
|
115 |
+
return self.deque[-1]
|
116 |
+
|
117 |
+
def __str__(self):
|
118 |
+
return self.fmt.format(
|
119 |
+
median=self.median,
|
120 |
+
avg=self.avg,
|
121 |
+
global_avg=self.global_avg,
|
122 |
+
max=self.max,
|
123 |
+
value=self.value)
|
124 |
+
|
125 |
+
|
126 |
+
def all_gather(data):
|
127 |
+
"""
|
128 |
+
Run all_gather on arbitrary picklable data (not necessarily tensors)
|
129 |
+
Args:
|
130 |
+
data: any picklable object
|
131 |
+
Returns:
|
132 |
+
list[data]: list of data gathered from each rank
|
133 |
+
"""
|
134 |
+
world_size = get_world_size()
|
135 |
+
if world_size == 1:
|
136 |
+
return [data]
|
137 |
+
|
138 |
+
# serialized to a Tensor
|
139 |
+
buffer = pickle.dumps(data)
|
140 |
+
storage = torch.ByteStorage.from_buffer(buffer)
|
141 |
+
tensor = torch.ByteTensor(storage).to("cuda")
|
142 |
+
|
143 |
+
# obtain Tensor size of each rank
|
144 |
+
local_size = torch.tensor([tensor.numel()], device="cuda")
|
145 |
+
size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)]
|
146 |
+
dist.all_gather(size_list, local_size)
|
147 |
+
size_list = [int(size.item()) for size in size_list]
|
148 |
+
max_size = max(size_list)
|
149 |
+
|
150 |
+
# receiving Tensor from all ranks
|
151 |
+
# we pad the tensor because torch all_gather does not support
|
152 |
+
# gathering tensors of different shapes
|
153 |
+
tensor_list = []
|
154 |
+
for _ in size_list:
|
155 |
+
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda"))
|
156 |
+
if local_size != max_size:
|
157 |
+
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda")
|
158 |
+
tensor = torch.cat((tensor, padding), dim=0)
|
159 |
+
dist.all_gather(tensor_list, tensor)
|
160 |
+
|
161 |
+
data_list = []
|
162 |
+
for size, tensor in zip(size_list, tensor_list):
|
163 |
+
buffer = tensor.cpu().numpy().tobytes()[:size]
|
164 |
+
data_list.append(pickle.loads(buffer))
|
165 |
+
|
166 |
+
return data_list
|
167 |
+
|
168 |
+
|
169 |
+
def reduce_dict(input_dict, average=True):
|
170 |
+
"""
|
171 |
+
Args:
|
172 |
+
input_dict (dict): all the values will be reduced
|
173 |
+
average (bool): whether to do average or sum
|
174 |
+
Reduce the values in the dictionary from all processes so that all processes
|
175 |
+
have the averaged results. Returns a dict with the same fields as
|
176 |
+
input_dict, after reduction.
|
177 |
+
"""
|
178 |
+
world_size = get_world_size()
|
179 |
+
if world_size < 2:
|
180 |
+
return input_dict
|
181 |
+
with torch.no_grad():
|
182 |
+
names = []
|
183 |
+
values = []
|
184 |
+
# sort the keys so that they are consistent across processes
|
185 |
+
for k in sorted(input_dict.keys()):
|
186 |
+
names.append(k)
|
187 |
+
values.append(input_dict[k])
|
188 |
+
values = torch.stack(values, dim=0)
|
189 |
+
dist.all_reduce(values)
|
190 |
+
if average:
|
191 |
+
values /= world_size
|
192 |
+
reduced_dict = {k: v for k, v in zip(names, values)}
|
193 |
+
return reduced_dict
|
194 |
+
|
195 |
+
|
196 |
+
class MetricLogger(object):
|
197 |
+
def __init__(self, delimiter="\t"):
|
198 |
+
self.meters = defaultdict(SmoothedValue)
|
199 |
+
self.delimiter = delimiter
|
200 |
+
|
201 |
+
def update(self, **kwargs):
|
202 |
+
for k, v in kwargs.items():
|
203 |
+
if isinstance(v, torch.Tensor):
|
204 |
+
v = v.item()
|
205 |
+
assert isinstance(v, (float, int))
|
206 |
+
self.meters[k].update(v)
|
207 |
+
|
208 |
+
def __getattr__(self, attr):
|
209 |
+
if attr in self.meters:
|
210 |
+
return self.meters[attr]
|
211 |
+
if attr in self.__dict__:
|
212 |
+
return self.__dict__[attr]
|
213 |
+
raise AttributeError("'{}' object has no attribute '{}'".format(
|
214 |
+
type(self).__name__, attr))
|
215 |
+
|
216 |
+
def __str__(self):
|
217 |
+
loss_str = []
|
218 |
+
for name, meter in self.meters.items():
|
219 |
+
loss_str.append(
|
220 |
+
"{}: {}".format(name, str(meter))
|
221 |
+
)
|
222 |
+
return self.delimiter.join(loss_str)
|
223 |
+
|
224 |
+
def synchronize_between_processes(self):
|
225 |
+
for meter in self.meters.values():
|
226 |
+
meter.synchronize_between_processes()
|
227 |
+
|
228 |
+
def add_meter(self, name, meter):
|
229 |
+
self.meters[name] = meter
|
230 |
+
|
231 |
+
def log_every(self, iterable, print_freq, header=None):
|
232 |
+
i = 0
|
233 |
+
if not header:
|
234 |
+
header = ''
|
235 |
+
start_time = time.time()
|
236 |
+
end = time.time()
|
237 |
+
iter_time = SmoothedValue(fmt='{avg:.4f}')
|
238 |
+
data_time = SmoothedValue(fmt='{avg:.4f}')
|
239 |
+
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
|
240 |
+
if torch.cuda.is_available():
|
241 |
+
log_msg = self.delimiter.join([
|
242 |
+
header,
|
243 |
+
'[{0' + space_fmt + '}/{1}]',
|
244 |
+
'eta: {eta}',
|
245 |
+
'{meters}',
|
246 |
+
'time: {time}',
|
247 |
+
'data: {data}',
|
248 |
+
'max mem: {memory:.0f}'
|
249 |
+
])
|
250 |
+
else:
|
251 |
+
log_msg = self.delimiter.join([
|
252 |
+
header,
|
253 |
+
'[{0' + space_fmt + '}/{1}]',
|
254 |
+
'eta: {eta}',
|
255 |
+
'{meters}',
|
256 |
+
'time: {time}',
|
257 |
+
'data: {data}'
|
258 |
+
])
|
259 |
+
MB = 1024.0 * 1024.0
|
260 |
+
for obj in iterable:
|
261 |
+
data_time.update(time.time() - end)
|
262 |
+
yield obj
|
263 |
+
iter_time.update(time.time() - end)
|
264 |
+
if i % print_freq == 0 or i == len(iterable) - 1:
|
265 |
+
eta_seconds = iter_time.global_avg * (len(iterable) - i)
|
266 |
+
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
|
267 |
+
if torch.cuda.is_available():
|
268 |
+
print(log_msg.format(
|
269 |
+
i, len(iterable), eta=eta_string,
|
270 |
+
meters=str(self),
|
271 |
+
time=str(iter_time), data=str(data_time),
|
272 |
+
memory=torch.cuda.max_memory_allocated() / MB))
|
273 |
+
else:
|
274 |
+
print(log_msg.format(
|
275 |
+
i, len(iterable), eta=eta_string,
|
276 |
+
meters=str(self),
|
277 |
+
time=str(iter_time), data=str(data_time)))
|
278 |
+
i += 1
|
279 |
+
end = time.time()
|
280 |
+
total_time = time.time() - start_time
|
281 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
282 |
+
print('{} Total time: {} ({:.4f} s / it)'.format(
|
283 |
+
header, total_time_str, total_time / len(iterable)))
|
284 |
+
|
285 |
+
|
286 |
+
def get_sha():
|
287 |
+
cwd = os.path.dirname(os.path.abspath(__file__))
|
288 |
+
|
289 |
+
def _run(command):
|
290 |
+
return subprocess.check_output(command, cwd=cwd).decode('ascii').strip()
|
291 |
+
sha = 'N/A'
|
292 |
+
diff = "clean"
|
293 |
+
branch = 'N/A'
|
294 |
+
try:
|
295 |
+
sha = _run(['git', 'rev-parse', 'HEAD'])
|
296 |
+
subprocess.check_output(['git', 'diff'], cwd=cwd)
|
297 |
+
diff = _run(['git', 'diff-index', 'HEAD'])
|
298 |
+
diff = "has uncommited changes" if diff else "clean"
|
299 |
+
branch = _run(['git', 'rev-parse', '--abbrev-ref', 'HEAD'])
|
300 |
+
except Exception:
|
301 |
+
pass
|
302 |
+
message = f"sha: {sha}, status: {diff}, branch: {branch}"
|
303 |
+
return message
|
304 |
+
|
305 |
+
|
306 |
+
def collate_fn(batch):
|
307 |
+
batch = list(zip(*batch))
|
308 |
+
batch[0] = nested_tensor_from_tensor_list(batch[0])
|
309 |
+
return tuple(batch)
|
310 |
+
|
311 |
+
|
312 |
+
def _max_by_axis(the_list):
|
313 |
+
# type: (List[List[int]]) -> List[int]
|
314 |
+
maxes = the_list[0]
|
315 |
+
for sublist in the_list[1:]:
|
316 |
+
for index, item in enumerate(sublist):
|
317 |
+
maxes[index] = max(maxes[index], item)
|
318 |
+
return maxes
|
319 |
+
|
320 |
+
|
321 |
+
def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
|
322 |
+
# TODO make this more general
|
323 |
+
if tensor_list[0].ndim == 3:
|
324 |
+
# TODO make it support different-sized images
|
325 |
+
max_size = _max_by_axis([list(img.shape) for img in tensor_list])
|
326 |
+
# min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
|
327 |
+
batch_shape = [len(tensor_list)] + max_size
|
328 |
+
b, c, h, w = batch_shape
|
329 |
+
dtype = tensor_list[0].dtype
|
330 |
+
device = tensor_list[0].device
|
331 |
+
tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
|
332 |
+
mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
|
333 |
+
for img, pad_img, m in zip(tensor_list, tensor, mask):
|
334 |
+
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
|
335 |
+
m[: img.shape[1], :img.shape[2]] = False
|
336 |
+
else:
|
337 |
+
raise ValueError('not supported')
|
338 |
+
return NestedTensor(tensor, mask)
|
339 |
+
|
340 |
+
|
341 |
+
class NestedTensor(object):
|
342 |
+
def __init__(self, tensors, mask: Optional[Tensor]):
|
343 |
+
self.tensors = tensors
|
344 |
+
self.mask = mask
|
345 |
+
|
346 |
+
def to(self, device, non_blocking=False):
|
347 |
+
# type: (Device) -> NestedTensor # noqa
|
348 |
+
cast_tensor = self.tensors.to(device, non_blocking=non_blocking)
|
349 |
+
mask = self.mask
|
350 |
+
if mask is not None:
|
351 |
+
assert mask is not None
|
352 |
+
cast_mask = mask.to(device, non_blocking=non_blocking)
|
353 |
+
else:
|
354 |
+
cast_mask = None
|
355 |
+
return NestedTensor(cast_tensor, cast_mask)
|
356 |
+
|
357 |
+
def record_stream(self, *args, **kwargs):
|
358 |
+
self.tensors.record_stream(*args, **kwargs)
|
359 |
+
if self.mask is not None:
|
360 |
+
self.mask.record_stream(*args, **kwargs)
|
361 |
+
|
362 |
+
def decompose(self):
|
363 |
+
return self.tensors, self.mask
|
364 |
+
|
365 |
+
def __repr__(self):
|
366 |
+
return str(self.tensors)
|
367 |
+
|
368 |
+
|
369 |
+
def setup_for_distributed(is_master):
|
370 |
+
"""
|
371 |
+
This function disables printing when not in master process
|
372 |
+
"""
|
373 |
+
import builtins as __builtin__
|
374 |
+
builtin_print = __builtin__.print
|
375 |
+
|
376 |
+
def print(*args, **kwargs):
|
377 |
+
force = kwargs.pop('force', False)
|
378 |
+
if is_master or force:
|
379 |
+
builtin_print(*args, **kwargs)
|
380 |
+
|
381 |
+
__builtin__.print = print
|
382 |
+
|
383 |
+
|
384 |
+
def is_dist_avail_and_initialized():
|
385 |
+
if not dist.is_available():
|
386 |
+
return False
|
387 |
+
if not dist.is_initialized():
|
388 |
+
return False
|
389 |
+
return True
|
390 |
+
|
391 |
+
|
392 |
+
def get_world_size():
|
393 |
+
if not is_dist_avail_and_initialized():
|
394 |
+
return 1
|
395 |
+
return dist.get_world_size()
|
396 |
+
|
397 |
+
|
398 |
+
def get_rank():
|
399 |
+
if not is_dist_avail_and_initialized():
|
400 |
+
return 0
|
401 |
+
return dist.get_rank()
|
402 |
+
|
403 |
+
|
404 |
+
def get_local_size():
|
405 |
+
if not is_dist_avail_and_initialized():
|
406 |
+
return 1
|
407 |
+
return int(os.environ['LOCAL_SIZE'])
|
408 |
+
|
409 |
+
|
410 |
+
def get_local_rank():
|
411 |
+
if not is_dist_avail_and_initialized():
|
412 |
+
return 0
|
413 |
+
return int(os.environ['LOCAL_RANK'])
|
414 |
+
|
415 |
+
|
416 |
+
def is_main_process():
|
417 |
+
return get_rank() == 0
|
418 |
+
|
419 |
+
|
420 |
+
def save_on_master(*args, **kwargs):
|
421 |
+
if is_main_process():
|
422 |
+
torch.save(*args, **kwargs)
|
423 |
+
|
424 |
+
|
425 |
+
def init_distributed_mode(args):
|
426 |
+
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
|
427 |
+
args.rank = int(os.environ["RANK"])
|
428 |
+
args.world_size = int(os.environ['WORLD_SIZE'])
|
429 |
+
args.gpu = int(os.environ['LOCAL_RANK'])
|
430 |
+
args.dist_url = 'env://'
|
431 |
+
os.environ['LOCAL_SIZE'] = str(torch.cuda.device_count())
|
432 |
+
elif 'SLURM_PROCID' in os.environ:
|
433 |
+
proc_id = int(os.environ['SLURM_PROCID'])
|
434 |
+
ntasks = int(os.environ['SLURM_NTASKS'])
|
435 |
+
node_list = os.environ['SLURM_NODELIST']
|
436 |
+
num_gpus = torch.cuda.device_count()
|
437 |
+
addr = subprocess.getoutput(
|
438 |
+
'scontrol show hostname {} | head -n1'.format(node_list))
|
439 |
+
os.environ['MASTER_PORT'] = os.environ.get('MASTER_PORT', '29500')
|
440 |
+
os.environ['MASTER_ADDR'] = addr
|
441 |
+
os.environ['WORLD_SIZE'] = str(ntasks)
|
442 |
+
os.environ['RANK'] = str(proc_id)
|
443 |
+
os.environ['LOCAL_RANK'] = str(proc_id % num_gpus)
|
444 |
+
os.environ['LOCAL_SIZE'] = str(num_gpus)
|
445 |
+
args.dist_url = 'env://'
|
446 |
+
args.world_size = ntasks
|
447 |
+
args.rank = proc_id
|
448 |
+
args.gpu = proc_id % num_gpus
|
449 |
+
else:
|
450 |
+
print('Not using distributed mode')
|
451 |
+
args.distributed = False
|
452 |
+
return
|
453 |
+
|
454 |
+
args.distributed = True
|
455 |
+
|
456 |
+
torch.cuda.set_device(args.gpu)
|
457 |
+
args.dist_backend = 'nccl'
|
458 |
+
print('| distributed init (rank {}): {}'.format(
|
459 |
+
args.rank, args.dist_url), flush=True)
|
460 |
+
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
|
461 |
+
world_size=args.world_size, rank=args.rank)
|
462 |
+
torch.distributed.barrier()
|
463 |
+
setup_for_distributed(args.rank == 0)
|
464 |
+
|
465 |
+
|
466 |
+
@torch.no_grad()
|
467 |
+
def accuracy(output, target, topk=(1,)):
|
468 |
+
"""Computes the precision@k for the specified values of k"""
|
469 |
+
if target.numel() == 0:
|
470 |
+
return [torch.zeros([], device=output.device)]
|
471 |
+
maxk = max(topk)
|
472 |
+
batch_size = target.size(0)
|
473 |
+
|
474 |
+
_, pred = output.topk(maxk, 1, True, True)
|
475 |
+
pred = pred.t()
|
476 |
+
correct = pred.eq(target.view(1, -1).expand_as(pred))
|
477 |
+
|
478 |
+
res = []
|
479 |
+
for k in topk:
|
480 |
+
correct_k = correct[:k].view(-1).float().sum(0)
|
481 |
+
res.append(correct_k.mul_(100.0 / batch_size))
|
482 |
+
return res
|
483 |
+
|
484 |
+
|
485 |
+
def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None):
|
486 |
+
# type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor
|
487 |
+
"""
|
488 |
+
Equivalent to nn.functional.interpolate, but with support for empty batch sizes.
|
489 |
+
This will eventually be supported natively by PyTorch, and this
|
490 |
+
class can go away.
|
491 |
+
"""
|
492 |
+
if float(torchvision.__version__[:3]) < 0.7:
|
493 |
+
if input.numel() > 0:
|
494 |
+
return torch.nn.functional.interpolate(
|
495 |
+
input, size, scale_factor, mode, align_corners
|
496 |
+
)
|
497 |
+
|
498 |
+
output_shape = _output_size(2, input, size, scale_factor)
|
499 |
+
output_shape = list(input.shape[:-2]) + list(output_shape)
|
500 |
+
if float(torchvision.__version__[:3]) < 0.5:
|
501 |
+
return _NewEmptyTensorOp.apply(input, output_shape)
|
502 |
+
return _new_empty_tensor(input, output_shape)
|
503 |
+
else:
|
504 |
+
return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners)
|
505 |
+
|
506 |
+
|
507 |
+
def get_total_grad_norm(parameters, norm_type=2):
|
508 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
509 |
+
norm_type = float(norm_type)
|
510 |
+
device = parameters[0].grad.device
|
511 |
+
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]),
|
512 |
+
norm_type)
|
513 |
+
return total_norm
|
514 |
+
|
515 |
+
def inverse_sigmoid(x, eps=1e-5):
|
516 |
+
x = x.clamp(min=0, max=1)
|
517 |
+
x1 = x.clamp(min=eps)
|
518 |
+
x2 = (1 - x).clamp(min=eps)
|
519 |
+
return torch.log(x1/x2)
|
520 |
+
|