|
|
|
|
|
|
|
|
|
|
|
|
|
import random |
|
|
|
import numpy as np |
|
import torch |
|
from audiocraft.models.multibanddiffusion import MultiBandDiffusion, DiffusionProcess |
|
from audiocraft.models import EncodecModel, DiffusionUnet |
|
from audiocraft.modules import SEANetEncoder, SEANetDecoder |
|
from audiocraft.modules.diffusion_schedule import NoiseSchedule |
|
from audiocraft.quantization import DummyQuantizer |
|
|
|
|
|
class TestMBD: |
|
|
|
def _create_mbd(self, |
|
sample_rate: int, |
|
channels: int, |
|
n_filters: int = 3, |
|
n_residual_layers: int = 1, |
|
ratios: list = [5, 4, 3, 2], |
|
num_steps: int = 1000, |
|
codec_dim: int = 128, |
|
**kwargs): |
|
frame_rate = np.prod(ratios) |
|
encoder = SEANetEncoder(channels=channels, dimension=codec_dim, n_filters=n_filters, |
|
n_residual_layers=n_residual_layers, ratios=ratios) |
|
decoder = SEANetDecoder(channels=channels, dimension=codec_dim, n_filters=n_filters, |
|
n_residual_layers=n_residual_layers, ratios=ratios) |
|
quantizer = DummyQuantizer() |
|
compression_model = EncodecModel(encoder, decoder, quantizer, frame_rate=frame_rate, |
|
sample_rate=sample_rate, channels=channels, **kwargs) |
|
diffusion_model = DiffusionUnet(chin=channels, num_steps=num_steps, codec_dim=codec_dim) |
|
schedule = NoiseSchedule(device='cpu', num_steps=num_steps) |
|
DP = DiffusionProcess(model=diffusion_model, noise_schedule=schedule) |
|
mbd = MultiBandDiffusion(DPs=[DP], codec_model=compression_model) |
|
return mbd |
|
|
|
def test_model(self): |
|
random.seed(1234) |
|
sample_rate = 24_000 |
|
channels = 1 |
|
codec_dim = 128 |
|
mbd = self._create_mbd(sample_rate=sample_rate, channels=channels, codec_dim=codec_dim) |
|
for _ in range(10): |
|
length = random.randrange(1, 10_000) |
|
x = torch.randn(2, channels, length) |
|
res = mbd.regenerate(x, sample_rate) |
|
assert res.shape == x.shape |
|
|