Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, T5ForConditionalGeneration | |
tokenizer = AutoTokenizer.from_pretrained("yuewu/T5_abstract2title") | |
model = T5ForConditionalGeneration.from_pretrained("yuewu/T5_abstract2title") | |
def title2abstract(text): | |
input_ids = tokenizer( | |
text, | |
padding='max_length', | |
max_length=512, | |
return_tensors="pt").input_ids | |
generated_ids = model.generate( | |
input_ids, | |
max_length=128, | |
# num_beams=3, | |
# no_repeat_ngram_size=2, | |
num_return_sequences=3, | |
do_sample=True, | |
top_k=50, | |
top_p=0.95, | |
early_stopping=True) | |
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) | |
output = f'1. {generated_text[0]}\n\n2. {generated_text[1]}\n\n3. {generated_text[2]}' | |
# output = generated_text | |
return output | |
demo = gr.Interface(fn=title2abstract, inputs="text", outputs="text", | |
title="Abstract to title generator", | |
description="Give a chemistry paper abstract and the model will suggest 3 titles.") | |
demo.launch() |