Spaces:
Sleeping
Sleeping
#!/usr/bin/env python3 | |
# | |
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) | |
# 2023 Nvidia. (authors: Yuekai Zhang) | |
# | |
# See LICENSE for clarification regarding multiple authors | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# References: | |
# https://gradio.app/docs/#dropdown | |
# https://huggingface.co/spaces/k2-fsa/automatic-speech-recognition | |
import logging | |
import os | |
import tempfile | |
import time | |
from datetime import datetime | |
import gradio as gr | |
import numpy as np | |
import urllib.request | |
import tritonclient | |
import tritonclient.grpc as grpcclient | |
from tritonclient.utils import np_to_triton_dtype | |
import soundfile | |
from examples import examples | |
def convert_to_wav(in_filename: str) -> str: | |
"""Convert the input audio file to a wave file""" | |
out_filename = in_filename + ".wav" | |
if '.mp3' in in_filename: | |
_ = os.system(f"ffmpeg -y -i '{in_filename}' -acodec pcm_s16le -ac 1 -ar 16000 '{out_filename}'") | |
else: | |
_ = os.system(f"ffmpeg -hide_banner -y -i '{in_filename}' -ar 16000 '{out_filename}'") | |
return out_filename | |
def build_html_output(s: str, style: str = "result_item_success"): | |
return f""" | |
<div class='result'> | |
<div class='result_item {style}'> | |
{s} | |
</div> | |
</div> | |
""" | |
def process_url( | |
language: str, | |
repo_id: str, | |
decoding_method: str, | |
whisper_prompt_textbox: str, | |
url: str, | |
server_url_textbox: str, | |
): | |
logging.info(f"Processing URL: {url}") | |
with tempfile.NamedTemporaryFile() as f: | |
try: | |
urllib.request.urlretrieve(url, f.name) | |
return process( | |
in_filename=f.name, | |
language=language, | |
repo_id=repo_id, | |
decoding_method=decoding_method, | |
whisper_prompt_textbox=whisper_prompt_textbox, | |
server_url=server_url_textbox, | |
) | |
except Exception as e: | |
logging.info(str(e)) | |
return "", build_html_output(str(e), "result_item_error") | |
def process_uploaded_file( | |
language: str, | |
repo_id: str, | |
decoding_method: str, | |
whisper_prompt_textbox: int, | |
in_filename: str, | |
server_url_textbox: str, | |
): | |
if in_filename is None or in_filename == "": | |
return "", build_html_output( | |
"Please first upload a file and then click " | |
'the button "submit for recognition"', | |
"result_item_error", | |
) | |
logging.info(f"Processing uploaded file: {in_filename}") | |
try: | |
return process( | |
in_filename=in_filename, | |
language=language, | |
repo_id=repo_id, | |
decoding_method=decoding_method, | |
whisper_prompt_textbox=whisper_prompt_textbox, | |
server_url=server_url_textbox, | |
) | |
except Exception as e: | |
logging.info(str(e)) | |
return "", build_html_output(str(e), "result_item_error") | |
def process_microphone( | |
language: str, | |
repo_id: str, | |
decoding_method: str, | |
whisper_prompt_textbox: str, | |
in_filename: str, | |
server_url_textbox: str, | |
): | |
if in_filename is None or in_filename == "": | |
return "", build_html_output( | |
"Please first click 'Record from microphone', speak, " | |
"click 'Stop recording', and then " | |
"click the button 'submit for recognition'", | |
"result_item_error", | |
) | |
logging.info(f"Processing microphone: {in_filename}") | |
try: | |
return process( | |
in_filename=in_filename, | |
language=language, | |
repo_id=repo_id, | |
decoding_method=decoding_method, | |
whisper_prompt_textbox=whisper_prompt_textbox, | |
server_url=server_url_textbox, | |
) | |
except Exception as e: | |
logging.info(str(e)) | |
return "", build_html_output(str(e), "result_item_error") | |
def send_whisper(whisper_prompt, wav_path, model_name, triton_client, protocol_client, padding_duration=10): | |
waveform, sample_rate = soundfile.read(wav_path) | |
assert sample_rate == 16000, f"Only support 16k sample rate, but got {sample_rate}" | |
duration = int(len(waveform) / sample_rate) | |
# padding to nearset 10 seconds | |
samples = np.zeros( | |
( | |
1, | |
padding_duration * sample_rate * ((duration // padding_duration) + 1), | |
), | |
dtype=np.float32, | |
) | |
samples[0, : len(waveform)] = waveform | |
lengths = np.array([[len(waveform)]], dtype=np.int32) | |
inputs = [ | |
protocol_client.InferInput( | |
"WAV", samples.shape, np_to_triton_dtype(samples.dtype) | |
), | |
protocol_client.InferInput( | |
"TEXT_PREFIX", [1, 1], "BYTES" | |
), | |
] | |
inputs[0].set_data_from_numpy(samples) | |
input_data_numpy = np.array([whisper_prompt], dtype=object) | |
input_data_numpy = input_data_numpy.reshape((1, 1)) | |
inputs[1].set_data_from_numpy(input_data_numpy) | |
outputs = [protocol_client.InferRequestedOutput("TRANSCRIPTS")] | |
# generate a random sequence id | |
sequence_id = np.random.randint(0, 1000000) | |
response = triton_client.infer( | |
model_name, inputs, request_id=str(sequence_id), outputs=outputs | |
) | |
decoding_results = response.as_numpy("TRANSCRIPTS")[0] | |
if type(decoding_results) == np.ndarray: | |
decoding_results = b" ".join(decoding_results).decode("utf-8") | |
else: | |
# For wenet | |
decoding_results = decoding_results.decode("utf-8") | |
return decoding_results, duration | |
def process( | |
language: str, | |
repo_id: str, | |
decoding_method: str, | |
whisper_prompt_textbox: str, | |
in_filename: str, | |
server_url: str, | |
): | |
logging.info(f"language: {language}") | |
logging.info(f"repo_id: {repo_id}") | |
logging.info(f"decoding_method: {decoding_method}") | |
logging.info(f"whisper_prompt_textbox: {whisper_prompt_textbox}") | |
logging.info(f"in_filename: {in_filename}") | |
model_name = "whisper" | |
triton_client = grpcclient.InferenceServerClient(url=server_url, verbose=False) | |
protocol_client = grpcclient | |
filename = convert_to_wav(in_filename) | |
now = datetime.now() | |
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f") | |
logging.info(f"Started at {date_time}") | |
start = time.time() | |
text, duration = send_whisper(whisper_prompt_textbox, filename, model_name, triton_client, protocol_client) | |
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f") | |
end = time.time() | |
#metadata = torchaudio.info(filename) | |
#duration = metadata.num_frames / sample_rate | |
rtf = (end - start) / duration | |
logging.info(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s") | |
info = f""" | |
Wave duration : {duration: .3f} s <br/> | |
Processing time: {end - start: .3f} s <br/> | |
RTF: {end - start: .3f}/{duration: .3f} = {rtf:.3f} <br/> | |
""" | |
if rtf > 1: | |
info += ( | |
"<br/>We are loading the model for the first run. " | |
"Please run again to measure the real RTF.<br/>" | |
) | |
logging.info(info) | |
logging.info(f"\nrepo_id: {repo_id}\nhyp: {text}") | |
return text, build_html_output(info) | |
title = "# Speech Recognition and Translation with Whisper" | |
description = """ | |
This space shows how to do speech recognition and translation with Nvidia **Triton**. | |
Please visit | |
<https://github.com/yuekaizhang/Triton-ASR-Client/tree/main> | |
for triton speech recognition. | |
The service is running on a GPU based on triton server. | |
See more information by visiting the following links: | |
- <https://github.com/triton-inference-server> | |
- <https://github.com/k2-fsa/sherpa/tree/master/triton> | |
- <https://github.com/wenet-e2e/wenet/tree/main/runtime/gpu> | |
- <https://github.com/alibaba-damo-academy/FunASR/tree/main/funasr/runtime/triton_gpu> | |
""" | |
# css style is copied from | |
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113 | |
css = """ | |
.result {display:flex;flex-direction:column} | |
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%} | |
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start} | |
.result_item_error {background-color:#ff7070;color:white;align-self:start} | |
""" | |
# def update_model_dropdown(language: str): | |
# if language in language_to_models: | |
# choices = language_to_models[language] | |
# return gr.Dropdown.update(choices=choices, value=choices[0]) | |
# raise ValueError(f"Unsupported language: {language}") | |
demo = gr.Blocks(css=css) | |
with demo: | |
gr.Markdown(title) | |
language_choices = ["Chinese", "English", "Chinese+English", "Korean", "Japanese", "Arabic", "German", "French", "Russian"] | |
server_url_textbox = gr.Textbox( | |
label='Triton Inference Server URL', | |
placeholder='e.g. localhost:8001', | |
max_lines=1, | |
) | |
whisper_prompt_textbox = gr.Textbox( | |
label='Whisper prompt', | |
placeholder='Whisper prompt e.g. <|startoftranscript|><zh><en><transcribe>', | |
max_lines=1, | |
) | |
language_radio = gr.Radio( | |
label="Language", | |
choices=language_choices, | |
value=language_choices[0], | |
) | |
model_dropdown = gr.Dropdown( | |
choices=["whisper-large-v2"], | |
label="Select a model", | |
value="whisper-large-v2", | |
) | |
# language_radio.change( | |
# update_model_dropdown, | |
# inputs=language_radio, | |
# outputs=model_dropdown, | |
# ) | |
decoding_method_radio = gr.Radio( | |
label="Decoding method", | |
choices=["greedy_search"], | |
value="greedy_search", | |
) | |
# whisper_prompt_textbox_slider = gr.Slider( | |
# minimum=1, | |
# value=4, | |
# step=1, | |
# label="Number of active paths for modified_beam_search", | |
# ) | |
with gr.Tabs(): | |
with gr.TabItem("Upload from disk"): | |
uploaded_file = gr.Audio( | |
source="upload", # Choose between "microphone", "upload" | |
type="filepath", | |
optional=False, | |
label="Upload from disk", | |
) | |
upload_button = gr.Button("Submit for recognition") | |
uploaded_output = gr.Textbox(label="Recognized speech from uploaded file") | |
uploaded_html_info = gr.HTML(label="Info") | |
gr.Examples( | |
examples=examples, | |
inputs=[ | |
language_radio, | |
model_dropdown, | |
decoding_method_radio, | |
whisper_prompt_textbox, | |
uploaded_file, | |
], | |
outputs=[uploaded_output, uploaded_html_info], | |
fn=process_uploaded_file, | |
cache_examples=False, | |
) | |
with gr.TabItem("Record from microphone"): | |
microphone = gr.Audio( | |
source="microphone", # Choose between "microphone", "upload" | |
type="filepath", | |
optional=False, | |
label="Record from microphone", | |
) | |
record_button = gr.Button("Submit for recognition") | |
recorded_output = gr.Textbox(label="Recognized speech from recordings") | |
recorded_html_info = gr.HTML(label="Info") | |
gr.Examples( | |
examples=examples, | |
inputs=[ | |
language_radio, | |
model_dropdown, | |
decoding_method_radio, | |
whisper_prompt_textbox, | |
microphone, | |
], | |
outputs=[recorded_output, recorded_html_info], | |
fn=process_microphone, | |
cache_examples=False, | |
) | |
with gr.TabItem("From URL"): | |
url_textbox = gr.Textbox( | |
max_lines=1, | |
placeholder="URL to an audio file", | |
label="URL", | |
interactive=True, | |
) | |
url_button = gr.Button("Submit for recognition") | |
url_output = gr.Textbox(label="Recognized speech from URL") | |
url_html_info = gr.HTML(label="Info") | |
upload_button.click( | |
process_uploaded_file, | |
inputs=[ | |
language_radio, | |
model_dropdown, | |
decoding_method_radio, | |
whisper_prompt_textbox, | |
uploaded_file, | |
server_url_textbox, | |
], | |
outputs=[uploaded_output, uploaded_html_info], | |
) | |
record_button.click( | |
process_microphone, | |
inputs=[ | |
language_radio, | |
model_dropdown, | |
decoding_method_radio, | |
whisper_prompt_textbox, | |
microphone, | |
server_url_textbox, | |
], | |
outputs=[recorded_output, recorded_html_info], | |
) | |
url_button.click( | |
process_url, | |
inputs=[ | |
language_radio, | |
model_dropdown, | |
decoding_method_radio, | |
whisper_prompt_textbox, | |
url_textbox, | |
server_url_textbox, | |
], | |
outputs=[url_output, url_html_info], | |
) | |
gr.Markdown(description) | |
if __name__ == "__main__": | |
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" | |
logging.basicConfig(format=formatter, level=logging.INFO) | |
demo.launch(share=True) | |