yudari's picture
Update app.py
2400df5
raw
history blame
1 kB
# Initialize the text generation pipeline
# This function will be able to generate text
# given an input.
pipe = pipeline("text2text-generation", model="NousResearch/Llama-2-13b-hf")
# Define a function to handle the GET request at `/generate`
# The generate() function is defined as a FastAPI route that takes a
# string parameter called text. The function generates text based on the
# input using the pipeline() object, and returns a JSON response
# containing the generated text under the key "output"
@app.get("/generate")
def generate(text: str):
"""
Using the text2text-generation pipeline from `transformers`, generate text
from the given input text. The model used is `NousResearch/Llama-2-13b-hf`,
which can be found [here](https://huggingface.co/NousResearch/Llama-2-13b-hf).
"""
# Use the pipeline to generate text from the given input text
output = pipe(text)
# Return the generated text in a JSON response
return {"output": output[0]["generated_text"]}