Spaces:
Running
on
Zero
Running
on
Zero
experiment: | |
project: "rar_generation" | |
name: "rar-b" | |
max_train_examples: 1_281_167 | |
save_every: 50_000 | |
eval_every: 50_000 | |
generate_every: 5_000 | |
log_every: 50 | |
log_grad_norm_every: 1_000 | |
resume: True | |
model: | |
vq_model: | |
codebook_size: 1024 | |
token_size: 256 | |
num_latent_tokens: 256 | |
finetune_decoder: False | |
pretrained_tokenizer_weight: "maskgit-vqgan-imagenet-f16-256.bin" | |
generator: | |
hidden_size: 768 | |
num_hidden_layers: 24 | |
num_attention_heads: 16 | |
intermediate_size: 3072 | |
dropout: 0.1 | |
attn_drop: 0.1 | |
class_label_dropout: 0.1 | |
image_seq_len: 256 | |
condition_num_classes: 1000 | |
# sampling hyper-params for RAR-B | |
randomize_temperature: 1.0 | |
guidance_scale: 16.0 | |
guidance_scale_pow: 2.75 | |
use_checkpoint: False # True to save memory | |
randomness_anneal_start: 125000 # 200 epoch | |
randomness_anneal_end: 187500 # 300 epoch | |
dataset: | |
params: | |
# use pretokenized dataset for speed-up | |
pretokenization: "maskgitvq.jsonl" | |
train_shards_path_or_url: "imagenet_sharded/train/imagenet-train-{0000..0252}.tar" | |
eval_shards_path_or_url: "imagenet_sharded/val/imagenet-val-{0000..0009}.tar" | |
num_workers_per_gpu: 12 | |
preprocessing: | |
resize_shorter_edge: 256 | |
crop_size: 256 | |
random_crop: False | |
random_flip: True | |
optimizer: | |
name: adamw | |
params: | |
learning_rate: 4e-4 | |
beta1: 0.9 | |
beta2: 0.96 | |
weight_decay: 0.03 | |
lr_scheduler: | |
scheduler: "cosine" | |
params: | |
learning_rate: ${optimizer.params.learning_rate} | |
warmup_steps: 62_500 # 100 epochs with bsz 2048 | |
end_lr: 1e-5 | |
training: | |
gradient_accumulation_steps: 1 | |
per_gpu_batch_size: 64 # 32 GPU, total batch size 2048 | |
mixed_precision: "bf16" | |
enable_tf32: True | |
enable_wandb: True | |
use_ema: False | |
seed: 42 | |
max_train_steps: 250_000 | |
max_grad_norm: 1.0 |