Spaces:
Running
on
Zero
Running
on
Zero
"""Building blocks for TiTok. | |
Copyright (2024) Bytedance Ltd. and/or its affiliates | |
Licensed under the Apache License, Version 2.0 (the "License"); | |
you may not use this file except in compliance with the License. | |
You may obtain a copy of the License at | |
http://www.apache.org/licenses/LICENSE-2.0 | |
Unless required by applicable law or agreed to in writing, software | |
distributed under the License is distributed on an "AS IS" BASIS, | |
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
See the License for the specific language governing permissions and | |
limitations under the License. | |
Reference: | |
https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/transformer.py | |
https://github.com/baofff/U-ViT/blob/main/libs/timm.py | |
""" | |
import torch | |
import torch.nn as nn | |
from collections import OrderedDict | |
import einops | |
from einops.layers.torch import Rearrange | |
class ResidualAttentionBlock(nn.Module): | |
def __init__( | |
self, | |
d_model, | |
n_head, | |
mlp_ratio = 4.0, | |
act_layer = nn.GELU, | |
norm_layer = nn.LayerNorm | |
): | |
super().__init__() | |
self.ln_1 = norm_layer(d_model) | |
self.attn = nn.MultiheadAttention(d_model, n_head) | |
self.mlp_ratio = mlp_ratio | |
# optionally we can disable the FFN | |
if mlp_ratio > 0: | |
self.ln_2 = norm_layer(d_model) | |
mlp_width = int(d_model * mlp_ratio) | |
self.mlp = nn.Sequential(OrderedDict([ | |
("c_fc", nn.Linear(d_model, mlp_width)), | |
("gelu", act_layer()), | |
("c_proj", nn.Linear(mlp_width, d_model)) | |
])) | |
def attention( | |
self, | |
x: torch.Tensor | |
): | |
return self.attn(x, x, x, need_weights=False)[0] | |
def forward( | |
self, | |
x: torch.Tensor, | |
): | |
attn_output = self.attention(x=self.ln_1(x)) | |
x = x + attn_output | |
if self.mlp_ratio > 0: | |
x = x + self.mlp(self.ln_2(x)) | |
return x | |
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'): | |
ATTENTION_MODE = 'flash' | |
else: | |
try: | |
import xformers | |
import xformers.ops | |
ATTENTION_MODE = 'xformers' | |
except: | |
ATTENTION_MODE = 'math' | |
print(f'attention mode is {ATTENTION_MODE}') | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, L, C = x.shape | |
qkv = self.qkv(x) | |
if ATTENTION_MODE == 'flash': | |
qkv = einops.rearrange(qkv, 'B L (K H D) -> K B H L D', K=3, H=self.num_heads).float() | |
q, k, v = qkv[0], qkv[1], qkv[2] # B H L D | |
x = torch.nn.functional.scaled_dot_product_attention(q, k, v) | |
x = einops.rearrange(x, 'B H L D -> B L (H D)') | |
elif ATTENTION_MODE == 'xformers': | |
qkv = einops.rearrange(qkv, 'B L (K H D) -> K B L H D', K=3, H=self.num_heads) | |
q, k, v = qkv[0], qkv[1], qkv[2] # B L H D | |
x = xformers.ops.memory_efficient_attention(q, k, v) | |
x = einops.rearrange(x, 'B L H D -> B L (H D)', H=self.num_heads) | |
elif ATTENTION_MODE == 'math': | |
qkv = einops.rearrange(qkv, 'B L (K H D) -> K B H L D', K=3, H=self.num_heads) | |
q, k, v = qkv[0], qkv[1], qkv[2] # B H L D | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, L, C) | |
else: | |
raise NotImplemented | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
def drop_path(x, drop_prob: float = 0., training: bool = False): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, | |
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for | |
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use | |
'survival rate' as the argument. | |
""" | |
if drop_prob == 0. or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) | |
random_tensor.floor_() # binarize | |
output = x.div(keep_prob) * random_tensor | |
return output | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
""" | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training) | |
class Mlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class UViTBlock(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip=False, use_checkpoint=False): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
self.skip_linear = nn.Linear(2 * dim, dim) if skip else None | |
self.use_checkpoint = use_checkpoint | |
def forward(self, x, skip=None): | |
if self.use_checkpoint: | |
return torch.utils.checkpoint.checkpoint(self._forward, x, skip) | |
else: | |
return self._forward(x, skip) | |
def _forward(self, x, skip=None): | |
if self.skip_linear is not None: | |
x = self.skip_linear(torch.cat([x, skip], dim=-1)) | |
x = x + self.drop_path(self.attn(self.norm1(x))) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
def _expand_token(token, batch_size: int): | |
return token.unsqueeze(0).expand(batch_size, -1, -1) | |
class TiTokEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.image_size = config.dataset.preprocessing.crop_size | |
self.patch_size = config.model.vq_model.vit_enc_patch_size | |
self.grid_size = self.image_size // self.patch_size | |
self.model_size = config.model.vq_model.vit_enc_model_size | |
self.num_latent_tokens = config.model.vq_model.num_latent_tokens | |
self.token_size = config.model.vq_model.token_size | |
if config.model.vq_model.get("quantize_mode", "vq") == "vae": | |
self.token_size = self.token_size * 2 # needs to split into mean and std | |
self.is_legacy = config.model.vq_model.get("is_legacy", True) | |
self.width = { | |
"small": 512, | |
"base": 768, | |
"large": 1024, | |
}[self.model_size] | |
self.num_layers = { | |
"small": 8, | |
"base": 12, | |
"large": 24, | |
}[self.model_size] | |
self.num_heads = { | |
"small": 8, | |
"base": 12, | |
"large": 16, | |
}[self.model_size] | |
self.patch_embed = nn.Conv2d( | |
in_channels=3, out_channels=self.width, | |
kernel_size=self.patch_size, stride=self.patch_size, bias=True) | |
scale = self.width ** -0.5 | |
self.class_embedding = nn.Parameter(scale * torch.randn(1, self.width)) | |
self.positional_embedding = nn.Parameter( | |
scale * torch.randn(self.grid_size ** 2 + 1, self.width)) | |
self.latent_token_positional_embedding = nn.Parameter( | |
scale * torch.randn(self.num_latent_tokens, self.width)) | |
self.ln_pre = nn.LayerNorm(self.width) | |
self.transformer = nn.ModuleList() | |
for i in range(self.num_layers): | |
self.transformer.append(ResidualAttentionBlock( | |
self.width, self.num_heads, mlp_ratio=4.0 | |
)) | |
self.ln_post = nn.LayerNorm(self.width) | |
self.conv_out = nn.Conv2d(self.width, self.token_size, kernel_size=1, bias=True) | |
def forward(self, pixel_values, latent_tokens): | |
batch_size = pixel_values.shape[0] | |
x = pixel_values | |
x = self.patch_embed(x) | |
x = x.reshape(x.shape[0], x.shape[1], -1) | |
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] | |
# class embeddings and positional embeddings | |
x = torch.cat([_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x], dim=1) | |
x = x + self.positional_embedding.to(x.dtype) # shape = [*, grid ** 2 + 1, width] | |
latent_tokens = _expand_token(latent_tokens, x.shape[0]).to(x.dtype) | |
latent_tokens = latent_tokens + self.latent_token_positional_embedding.to(x.dtype) | |
x = torch.cat([x, latent_tokens], dim=1) | |
x = self.ln_pre(x) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
for i in range(self.num_layers): | |
x = self.transformer[i](x) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
latent_tokens = x[:, 1+self.grid_size**2:] | |
latent_tokens = self.ln_post(latent_tokens) | |
# fake 2D shape | |
if self.is_legacy: | |
latent_tokens = latent_tokens.reshape(batch_size, self.width, self.num_latent_tokens, 1) | |
else: | |
# Fix legacy problem. | |
latent_tokens = latent_tokens.reshape(batch_size, self.num_latent_tokens, self.width, 1).permute(0, 2, 1, 3) | |
latent_tokens = self.conv_out(latent_tokens) | |
latent_tokens = latent_tokens.reshape(batch_size, self.token_size, 1, self.num_latent_tokens) | |
return latent_tokens | |
class TiTokDecoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.image_size = config.dataset.preprocessing.crop_size | |
self.patch_size = config.model.vq_model.vit_dec_patch_size | |
self.grid_size = self.image_size // self.patch_size | |
self.model_size = config.model.vq_model.vit_dec_model_size | |
self.num_latent_tokens = config.model.vq_model.num_latent_tokens | |
self.token_size = config.model.vq_model.token_size | |
self.is_legacy = config.model.vq_model.get("is_legacy", True) | |
self.width = { | |
"small": 512, | |
"base": 768, | |
"large": 1024, | |
}[self.model_size] | |
self.num_layers = { | |
"small": 8, | |
"base": 12, | |
"large": 24, | |
}[self.model_size] | |
self.num_heads = { | |
"small": 8, | |
"base": 12, | |
"large": 16, | |
}[self.model_size] | |
self.decoder_embed = nn.Linear( | |
self.token_size, self.width, bias=True) | |
scale = self.width ** -0.5 | |
self.class_embedding = nn.Parameter(scale * torch.randn(1, self.width)) | |
self.positional_embedding = nn.Parameter( | |
scale * torch.randn(self.grid_size ** 2 + 1, self.width)) | |
# add mask token and query pos embed | |
self.mask_token = nn.Parameter(scale * torch.randn(1, 1, self.width)) | |
self.latent_token_positional_embedding = nn.Parameter( | |
scale * torch.randn(self.num_latent_tokens, self.width)) | |
self.ln_pre = nn.LayerNorm(self.width) | |
self.transformer = nn.ModuleList() | |
for i in range(self.num_layers): | |
self.transformer.append(ResidualAttentionBlock( | |
self.width, self.num_heads, mlp_ratio=4.0 | |
)) | |
self.ln_post = nn.LayerNorm(self.width) | |
if self.is_legacy: | |
self.ffn = nn.Sequential( | |
nn.Conv2d(self.width, 2 * self.width, 1, padding=0, bias=True), | |
nn.Tanh(), | |
nn.Conv2d(2 * self.width, 1024, 1, padding=0, bias=True), | |
) | |
self.conv_out = nn.Identity() | |
else: | |
# Directly predicting RGB pixels | |
self.ffn = nn.Sequential( | |
nn.Conv2d(self.width, self.patch_size * self.patch_size * 3, 1, padding=0, bias=True), | |
Rearrange('b (p1 p2 c) h w -> b c (h p1) (w p2)', | |
p1 = self.patch_size, p2 = self.patch_size),) | |
self.conv_out = nn.Conv2d(3, 3, 3, padding=1, bias=True) | |
def forward(self, z_quantized): | |
N, C, H, W = z_quantized.shape | |
assert H == 1 and W == self.num_latent_tokens, f"{H}, {W}, {self.num_latent_tokens}" | |
x = z_quantized.reshape(N, C*H, W).permute(0, 2, 1) # NLD | |
x = self.decoder_embed(x) | |
batchsize, seq_len, _ = x.shape | |
mask_tokens = self.mask_token.repeat(batchsize, self.grid_size**2, 1).to(x.dtype) | |
mask_tokens = torch.cat([_expand_token(self.class_embedding, mask_tokens.shape[0]).to(mask_tokens.dtype), | |
mask_tokens], dim=1) | |
mask_tokens = mask_tokens + self.positional_embedding.to(mask_tokens.dtype) | |
x = x + self.latent_token_positional_embedding[:seq_len] | |
x = torch.cat([mask_tokens, x], dim=1) | |
x = self.ln_pre(x) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
for i in range(self.num_layers): | |
x = self.transformer[i](x) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = x[:, 1:1+self.grid_size**2] # remove cls embed | |
x = self.ln_post(x) | |
# N L D -> N D H W | |
x = x.permute(0, 2, 1).reshape(batchsize, self.width, self.grid_size, self.grid_size) | |
x = self.ffn(x.contiguous()) | |
x = self.conv_out(x) | |
return x |