yuchenlin commited on
Commit
dfce08c
1 Parent(s): ace1787

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -22
app.py CHANGED
@@ -1,19 +1,26 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
 
 
 
 
 
 
 
 
 
 
10
  def respond(
11
  message,
12
  history: list[tuple[str, str]],
13
  system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
  ):
18
  messages = [{"role": "system", "content": system_message}]
19
 
@@ -24,20 +31,26 @@ def respond(
24
  messages.append({"role": "assistant", "content": val[1]})
25
 
26
  messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
  messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
 
 
 
 
 
 
 
38
 
39
- response += token
40
- yield response
41
 
42
  """
43
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
@@ -45,7 +58,7 @@ For information on how to customize the ChatInterface, peruse the gradio docs: h
45
  demo = gr.ChatInterface(
46
  respond,
47
  additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
  gr.Slider(
@@ -60,4 +73,4 @@ demo = gr.ChatInterface(
60
 
61
 
62
  if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import spaces
4
 
5
+ # Load model and tokenizer
 
 
 
6
 
7
 
8
+ device = "cuda" # the device to load the model onto
9
+ tokenizer = AutoTokenizer.from_pretrained("yuchenlin/Rex-v0.1-1.5B", trust_remote_code=True, rex_size=3)
10
+ model = AutoModelForCausalLM.from_pretrained(
11
+ "yuchenlin/Rex-v0.1-1.5B",
12
+ torch_dtype="auto"
13
+ )
14
+ model.to(device)
15
+
16
+ @spaces.GPU(enable_queue=True)
17
  def respond(
18
  message,
19
  history: list[tuple[str, str]],
20
  system_message,
21
+ max_tokens=512,
22
+ temperature=0.5,
23
+ top_p=1.0,
24
  ):
25
  messages = [{"role": "system", "content": system_message}]
26
 
 
31
  messages.append({"role": "assistant", "content": val[1]})
32
 
33
  messages.append({"role": "user", "content": message})
34
+
35
+ text = tokenizer.apply_chat_template(
 
 
36
  messages,
37
+ tokenize=False,
38
+ add_generation_prompt=True
39
+ )
40
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
41
+
42
+ generated_ids = model.generate(
43
+ model_inputs.input_ids,
44
+ max_new_tokens = max_tokens,
45
+ temperature = temperature,
46
+ top_p = top_p,
47
+ )
48
+ generated_ids = [
49
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
50
+ ]
51
 
52
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
53
+ return response
54
 
55
  """
56
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
 
58
  demo = gr.ChatInterface(
59
  respond,
60
  additional_inputs=[
61
+ gr.Textbox(value="You are a helpful AI assistant and your name is RexLM.", label="System message"),
62
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
63
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
64
  gr.Slider(
 
73
 
74
 
75
  if __name__ == "__main__":
76
+ demo.launch(share=False)