demo_test / gradio_web_server.py
yuantao-infini-ai's picture
Upload folder using huggingface_hub
cf1798b verified
"""
The gradio demo server for chatting with a single model.
"""
import argparse
from collections import defaultdict
import datetime
import json
import os
import random
import time
import uuid
import gradio as gr
import requests
from fastchat.conversation import SeparatorStyle
from fastchat.constants import (
LOGDIR,
WORKER_API_TIMEOUT,
ErrorCode,
MODERATION_MSG,
CONVERSATION_LIMIT_MSG,
SERVER_ERROR_MSG,
INPUT_CHAR_LEN_LIMIT,
CONVERSATION_TURN_LIMIT,
SESSION_EXPIRATION_TIME,
)
from fastchat.model.model_adapter import get_conversation_template
from fastchat.conversation import get_conv_template
from fastchat.model.model_registry import get_model_info, model_info
from fastchat.serve.api_provider import (
anthropic_api_stream_iter,
openai_api_stream_iter,
palm_api_stream_iter,
init_palm_chat,
)
from fastchat.utils import (
build_logger,
moderation_filter,
get_window_url_params_js,
get_window_url_params_with_tos_js,
parse_gradio_auth_creds,
)
CONV_TEMPLATE = ''
logger = build_logger("gradio_web_server", "gradio_web_server.log")
headers = {"User-Agent": "FastChat Client"}
no_change_btn = gr.Button.update()
enable_btn = gr.Button.update(interactive=True, visible=True)
disable_btn = gr.Button.update(interactive=False)
invisible_btn = gr.Button.update(interactive=False, visible=False)
controller_url = None
enable_moderation = False
acknowledgment_md = """
### Acknowledgment
<div class="image-container">
<p> We thank <a href="https://www.kaggle.com/" target="_blank">Kaggle</a>, <a href="https://mbzuai.ac.ae/" target="_blank">MBZUAI</a>, <a href="https://www.anyscale.com/" target="_blank">AnyScale</a>, and <a href="https://huggingface.co/" target="_blank">HuggingFace</a> for their <a href="https://lmsys.org/donations/" target="_blank">sponsorship</a>. </p>
<img src="https://upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Kaggle_logo.png/400px-Kaggle_logo.png" alt="Image 1">
<img src="https://mma.prnewswire.com/media/1227419/MBZUAI_Logo.jpg?p=facebookg" alt="Image 2">
<img src="https://docs.anyscale.com/site-assets/logo.png" alt="Image 3">
<img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo-with-title.png" alt="Image 4">
</div>
"""
ip_expiration_dict = defaultdict(lambda: 0)
# Information about custom OpenAI compatible API models.
# JSON file format:
# {
# "vicuna-7b": {
# "model_name": "vicuna-7b-v1.5",
# "api_base": "http://8.8.8.55:5555/v1",
# "api_key": "password"
# },
# }
openai_compatible_models_info = {}
class State:
def __init__(self, model_name):
# if model_name=='checkpoint-800':
# self.conv = get_conv_template(CONV_TEMPLATE)
# elif model_name=='MiniCPM-2B-sft-bf16':
ret = requests.post(
controller_url + "/get_worker_address", json={"model": model_name}
)
worker_addr = ret.json()["address"]
conv_name = requests.post(
worker_addr + "/worker_get_conv_template",
).json()['conv']['name']
self.conv = get_conv_template(conv_name)
# self.conv = get_conv_template('minicpm')
# print(self.conv)
# self.conv = get_conversation_template(model_name)
self.conv_id = uuid.uuid4().hex
self.skip_next = False
self.model_name = model_name
if model_name == "palm-2":
# According to release note, "chat-bison@001" is PaLM 2 for chat.
# https://cloud.google.com/vertex-ai/docs/release-notes#May_10_2023
self.palm_chat = init_palm_chat("chat-bison@001")
def to_gradio_chatbot(self):
return self.conv.to_gradio_chatbot()
def dict(self):
base = self.conv.dict()
base.update(
{
"conv_id": self.conv_id,
"model_name": self.model_name,
}
)
return base
def set_global_vars(controller_url_, enable_moderation_):
global controller_url, enable_moderation
controller_url = controller_url_
enable_moderation = enable_moderation_
def get_conv_log_filename():
t = datetime.datetime.now()
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
return name
def get_model_list(
controller_url, register_openai_compatible_models, add_chatgpt, add_claude, add_palm
):
if controller_url:
ret = requests.post(controller_url + "/refresh_all_workers")
assert ret.status_code == 200
ret = requests.post(controller_url + "/list_models")
# ret = requests.post(controller_url + "/get_worker_address")
# ret = requests.post(controller_url + "/worker_get_status")
models = ret.json()["models"]
else:
models = []
# Add API providers
if register_openai_compatible_models:
global openai_compatible_models_info
openai_compatible_models_info = json.load(
open(register_openai_compatible_models)
)
models += list(openai_compatible_models_info.keys())
if add_chatgpt:
models += ["gpt-3.5-turbo", "gpt-4", "gpt-4-turbo", "gpt-3.5-turbo-1106"]
if add_claude:
models += ["claude-2", "claude-instant-1"]
if add_palm:
models += ["palm-2"]
models = list(set(models))
if "deluxe-chat-v1" in models:
del models[models.index("deluxe-chat-v1")]
if "deluxe-chat-v1.1" in models:
del models[models.index("deluxe-chat-v1.1")]
priority = {k: f"___{i:02d}" for i, k in enumerate(model_info)}
models.sort(key=lambda x: priority.get(x, x))
logger.info(f"Models: {models}")
return models
def load_demo_single(models, url_params):
selected_model = models[0] if len(models) > 0 else ""
if "model" in url_params:
model = url_params["model"]
if model in models:
selected_model = model
dropdown_update = gr.Dropdown.update(
choices=models, value=selected_model, visible=True
)
state = None
return state, dropdown_update
def load_demo(url_params, request: gr.Request):
global models
ip = get_ip(request)
logger.info(f"load_demo. ip: {ip}. params: {url_params}")
ip_expiration_dict[ip] = time.time() + SESSION_EXPIRATION_TIME
if args.model_list_mode == "reload":
models = get_model_list(
controller_url,
args.register_openai_compatible_models,
args.add_chatgpt,
args.add_claude,
args.add_palm,
)
return load_demo_single(models, url_params)
def vote_last_response(state, vote_type, model_selector, request: gr.Request):
with open('./web_chat_downvote.jsonl', "a+") as fout:
# data = {
# "tstamp": round(time.time(), 4),
# "type": vote_type,
# "model": model_selector,
# "state": state.dict(),
# "ip": get_ip(request),
# }
conversations = []
for i, turn in enumerate(state.dict()['messages']):
role = 'user' if i % 2 == 0 else 'assistant'
conversations.append({'role': role, 'content': turn[1]})
data = {
'conversations': conversations,
'idx': state.dict()['conv_id'],
'tinder': 'badcase',
'model': state.dict()['model_name'],
'tokens_in': -1,
'tokens_out': -1,
}
fout.write(json.dumps(data, ensure_ascii=False) + "\n")
def upvote_last_response(state, model_selector, request: gr.Request):
ip = get_ip(request)
logger.info(f"upvote. ip: {ip}")
vote_last_response(state, "upvote", model_selector, request)
return ("",) + (disable_btn,) * 3
def downvote_last_response(state, model_selector, request: gr.Request):
ip = get_ip(request)
logger.info(f"downvote. ip: {ip}")
vote_last_response(state, "downvote", model_selector, request)
return ("",) + (disable_btn,) * 3
def flag_last_response(state, model_selector, request: gr.Request):
ip = get_ip(request)
logger.info(f"flag. ip: {ip}")
vote_last_response(state, "flag", model_selector, request)
return ("",) + (disable_btn,) * 3
def regenerate(state, request: gr.Request):
ip = get_ip(request)
logger.info(f"regenerate. ip: {ip}")
state.conv.update_last_message(None)
return (state, state.to_gradio_chatbot(), "") + (disable_btn,) * 5
def clear_history(request: gr.Request):
ip = get_ip(request)
logger.info(f"clear_history. ip: {ip}")
state = None
return (state, [], "") + (disable_btn,) * 5
def get_ip(request: gr.Request):
if "cf-connecting-ip" in request.headers:
ip = request.headers["cf-connecting-ip"]
else:
ip = request.client.host
return ip
def add_text(state, model_selector, text, request: gr.Request):
ip = get_ip(request)
logger.info(f"add_text. ip: {ip}. len: {len(text)}")
if state is None:
state = State(model_selector)
if len(text) <= 0:
state.skip_next = True
return (state, state.to_gradio_chatbot(), "") + (no_change_btn,) * 5
flagged = moderation_filter(text, [state.model_name])
if flagged:
logger.info(f"violate moderation. ip: {ip}. text: {text}")
# overwrite the original text
text = MODERATION_MSG
conv = state.conv
if (len(conv.messages) - conv.offset) // 2 >= CONVERSATION_TURN_LIMIT:
logger.info(f"conversation turn limit. ip: {ip}. text: {text}")
state.skip_next = True
return (state, state.to_gradio_chatbot(), CONVERSATION_LIMIT_MSG) + (
no_change_btn,
) * 5
text = text[:INPUT_CHAR_LEN_LIMIT] # Hard cut-off
conv.append_message(conv.roles[0], text)
conv.append_message(conv.roles[1], None)
return (state, state.to_gradio_chatbot(), "") + (disable_btn,) * 5
def post_process_code(code):
sep = "\n```"
if sep in code:
blocks = code.split(sep)
if len(blocks) % 2 == 1:
for i in range(1, len(blocks), 2):
blocks[i] = blocks[i].replace("\\_", "_")
code = sep.join(blocks)
return code
def model_worker_stream_iter(
conv,
model_name,
worker_addr,
prompt,
temperature,
repetition_penalty,
top_p,
max_new_tokens,
):
# Make requests
gen_params = {
"model": model_name,
"prompt": prompt,
"temperature": temperature,
"repetition_penalty": repetition_penalty,
"top_p": top_p,
"max_new_tokens": max_new_tokens,
"stop": conv.stop_str,
"stop_token_ids": conv.stop_token_ids,
"echo": False,
}
logger.info(f"==== request ====\n{gen_params}")
# Stream output
response = requests.post(
worker_addr + "/worker_generate_stream",
headers=headers,
json=gen_params,
stream=True,
timeout=WORKER_API_TIMEOUT,
)
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode())
yield data
def bot_response(state, temperature, top_p, max_new_tokens, request: gr.Request):
ip = get_ip(request)
logger.info(f"bot_response. ip: {ip}")
start_tstamp = time.time()
temperature = float(temperature)
top_p = float(top_p)
max_new_tokens = int(max_new_tokens)
if state.skip_next:
# This generate call is skipped due to invalid inputs
state.skip_next = False
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
return
conv, model_name = state.conv, state.model_name
if model_name in ["gpt-3.5-turbo", "gpt-4", "gpt-4-turbo", "gpt-3.5-turbo-1106"]:
prompt = conv.to_openai_api_messages()
stream_iter = openai_api_stream_iter(
model_name, prompt, temperature, top_p, max_new_tokens
)
elif model_name in ["claude-2", "claude-1", "claude-instant-1"]:
prompt = conv.get_prompt()
stream_iter = anthropic_api_stream_iter(
model_name, prompt, temperature, top_p, max_new_tokens
)
elif model_name == "palm-2":
stream_iter = palm_api_stream_iter(
state.palm_chat, conv.messages[-2][1], temperature, top_p, max_new_tokens
)
elif model_name in openai_compatible_models_info:
model_info = openai_compatible_models_info[model_name]
prompt = conv.to_openai_api_messages()
stream_iter = openai_api_stream_iter(
model_info["model_name"],
prompt,
temperature,
top_p,
max_new_tokens,
api_base=model_info["api_base"],
api_key=model_info["api_key"],
)
else:
# Query worker address
ret = requests.post(
controller_url + "/get_worker_address", json={"model": model_name}
)
worker_addr = ret.json()["address"]
logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}")
# No available worker
if worker_addr == "":
conv.update_last_message(SERVER_ERROR_MSG)
yield (
state,
state.to_gradio_chatbot(),
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
# Construct prompt.
# We need to call it here, so it will not be affected by "▌".
prompt = conv.get_prompt()
# Set repetition_penalty
if "t5" in model_name:
repetition_penalty = 1.2
else:
repetition_penalty = 1.0
stream_iter = model_worker_stream_iter(
conv,
model_name,
worker_addr,
prompt,
temperature,
repetition_penalty,
top_p,
max_new_tokens,
)
conv.update_last_message("▌")
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
try:
for i, data in enumerate(stream_iter):
if data["error_code"] == 0:
output = data["text"].strip()
conv.update_last_message(output + "▌")
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
else:
output = data["text"] + f"\n\n(error_code: {data['error_code']})"
conv.update_last_message(output)
yield (state, state.to_gradio_chatbot()) + (
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
output = data["text"].strip()
if "vicuna" in model_name:
output = post_process_code(output)
conv.update_last_message(output)
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
except requests.exceptions.RequestException as e:
conv.update_last_message(
f"{SERVER_ERROR_MSG}\n\n"
f"(error_code: {ErrorCode.GRADIO_REQUEST_ERROR}, {e})"
)
yield (state, state.to_gradio_chatbot()) + (
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
except Exception as e:
conv.update_last_message(
f"{SERVER_ERROR_MSG}\n\n"
f"(error_code: {ErrorCode.GRADIO_STREAM_UNKNOWN_ERROR}, {e})"
)
yield (state, state.to_gradio_chatbot()) + (
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
finish_tstamp = time.time()
logger.info(f"{output}")
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(finish_tstamp, 4),
"type": "chat",
"model": model_name,
"gen_params": {
"temperature": temperature,
"top_p": top_p,
"max_new_tokens": max_new_tokens,
},
"start": round(start_tstamp, 4),
"finish": round(finish_tstamp, 4),
"state": state.dict(),
"ip": get_ip(request),
}
fout.write(json.dumps(data) + "\n")
block_css = """
#notice_markdown {
font-size: 110%
}
#notice_markdown th {
display: none;
}
#notice_markdown td {
padding-top: 6px;
padding-bottom: 6px;
}
#leaderboard_markdown {
font-size: 110%
}
#leaderboard_markdown td {
padding-top: 6px;
padding-bottom: 6px;
}
#leaderboard_dataframe td {
line-height: 0.1em;
}
#about_markdown {
font-size: 110%
}
#input_box textarea {
}
footer {
display:none !important
}
.image-container {
display: flex;
align-items: center;
padding: 1px;
}
.image-container img {
margin: 0 30px;
height: 20px;
max-height: 100%;
width: auto;
max-width: 20%;
}
.image-about img {
margin: 0 30px;
margin-top: 30px;
height: 60px;
max-height: 100%;
width: auto;
float: left;
}
"""
def get_model_description_md(models):
model_description_md = """
| | | |
| ---- | ---- | ---- |
"""
ct = 0
visited = set()
for i, name in enumerate(models):
minfo = get_model_info(name)
if minfo.simple_name in visited:
continue
visited.add(minfo.simple_name)
one_model_md = f"[{minfo.simple_name}]({minfo.link}): {minfo.description}"
if ct % 3 == 0:
model_description_md += "|"
model_description_md += f" {one_model_md} |"
if ct % 3 == 2:
model_description_md += "\n"
ct += 1
return model_description_md
def build_about():
about_markdown = f"""
# About Us
Chatbot Arena is an open-source research project developed by members from [LMSYS](https://lmsys.org/about/) and UC Berkeley [SkyLab](https://sky.cs.berkeley.edu/). Our mission is to build an open crowdsourced platform to collect human feedback and evaluate LLMs under real-world scenarios. We open-source our code at [GitHub](https://github.com/lm-sys/FastChat) and release chat and human feedback datasets [here](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md). We invite everyone to join us in this journey!
## Read More
- Chatbot Arena [launch post](https://lmsys.org/blog/2023-05-03-arena/), [data release](https://lmsys.org/blog/2023-07-20-dataset/)
- LMSYS-Chat-1M [report](https://arxiv.org/abs/2309.11998)
## Core Members
[Lianmin Zheng](https://lmzheng.net/), [Wei-Lin Chiang](https://infwinston.github.io/), [Ying Sheng](https://sites.google.com/view/yingsheng/home), [Siyuan Zhuang](https://scholar.google.com/citations?user=KSZmI5EAAAAJ)
## Advisors
[Ion Stoica](http://people.eecs.berkeley.edu/~istoica/), [Joseph E. Gonzalez](https://people.eecs.berkeley.edu/~jegonzal/), [Hao Zhang](https://cseweb.ucsd.edu/~haozhang/)
## Contact Us
- Follow our [Twitter](https://twitter.com/lmsysorg), [Discord](https://discord.gg/HSWAKCrnFx) or email us at lmsys.org@gmail.com
- File issues on [GitHub](https://github.com/lm-sys/FastChat)
- Download our datasets and models on [HuggingFace](https://huggingface.co/lmsys)
## Sponsors
We thank [Kaggle](https://www.kaggle.com/), [MBZUAI](https://mbzuai.ac.ae/), [Anyscale](https://www.anyscale.com/), [HuggingFace](https://huggingface.co/) for their generous sponsorship.
Learn more about partnership [here](https://lmsys.org/donations/).
<div class="image-about">
<img src="https://upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Kaggle_logo.png/400px-Kaggle_logo.png" alt="Image 1">
<img src="https://upload.wikimedia.org/wikipedia/en/5/55/Mohamed_bin_Zayed_University_of_Artificial_Intelligence_logo.png" alt="Image 2">
<img src="https://docs.anyscale.com/site-assets/logo.png" alt="Image 3">
<img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.png" alt="Image 4">
</div>
"""
# state = gr.State()
gr.Markdown(about_markdown, elem_id="about_markdown")
# return [state]
def build_single_model_ui(models, add_promotion_links=False):
promotion = (
"""
- | [GitHub](https://github.com/lm-sys/FastChat) | [Dataset](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md) | [Twitter](https://twitter.com/lmsysorg) | [Discord](https://discord.gg/HSWAKCrnFx) |
- Introducing Llama 2: The Next Generation Open Source Large Language Model. [[Website]](https://ai.meta.com/llama/)
- Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90% ChatGPT Quality. [[Blog]](https://lmsys.org/blog/2023-03-30-vicuna/)
"""
if add_promotion_links
else ""
)
notice_markdown = f"""
# 🏔️ Chat with Open Large Language Models
{promotion}
## 👉 Choose any model to chat
"""
state = gr.State()
model_description_md = get_model_description_md(models)
gr.Markdown(notice_markdown + model_description_md, elem_id="notice_markdown")
with gr.Row(elem_id="model_selector_row"):
model_selector = gr.Dropdown(
choices=models,
value=models[0] if len(models) > 0 else "",
interactive=True,
show_label=False,
container=False,
)
chatbot = gr.Chatbot(
elem_id="chatbot",
label="Scroll down and start chatting",
height=550,
)
with gr.Row():
with gr.Column(scale=20):
textbox = gr.Textbox(
show_label=False,
placeholder="Enter your prompt here and press ENTER",
container=False,
elem_id="input_box",
)
with gr.Column(scale=1, min_width=50):
send_btn = gr.Button(value="Send", variant="primary")
with gr.Row() as button_row:
upvote_btn = gr.Button(value="👍 Upvote", interactive=False)
downvote_btn = gr.Button(value="👎 Downvote", interactive=False)
flag_btn = gr.Button(value="⚠️ Flag", interactive=False)
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False)
clear_btn = gr.Button(value="🗑️ Clear history", interactive=False)
with gr.Accordion("Parameters", open=False) as parameter_row:
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=1.0,
step=0.1,
interactive=True,
label="Top P",
)
max_output_tokens = gr.Slider(
minimum=16,
maximum=3072,
value=2048,
step=1,
interactive=True,
label="Max output tokens",
)
if add_promotion_links:
gr.Markdown(acknowledgment_md)
# Register listeners
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
upvote_btn.click(
upvote_last_response,
[state, model_selector],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
downvote_btn.click(
downvote_last_response,
[state, model_selector],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
flag_btn.click(
flag_last_response,
[state, model_selector],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
regenerate_btn.click(regenerate, state, [state, chatbot, textbox] + btn_list).then(
bot_response,
[state, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list,
)
clear_btn.click(clear_history, None, [state, chatbot, textbox] + btn_list)
model_selector.change(clear_history, None, [state, chatbot, textbox] + btn_list)
textbox.submit(
add_text, [state, model_selector, textbox], [state, chatbot, textbox] + btn_list
).then(
bot_response,
[state, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list,
)
send_btn.click(
add_text,
[state, model_selector, textbox],
[state, chatbot, textbox] + btn_list,
).then(
bot_response,
[state, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list,
)
return [state, model_selector]
def build_demo(models):
with gr.Blocks(
title="Chat with Open Large Language Models",
theme=gr.themes.Default(),
css=block_css,
) as demo:
url_params = gr.JSON(visible=False)
state, model_selector = build_single_model_ui(models)
if args.model_list_mode not in ["once", "reload"]:
raise ValueError(f"Unknown model list mode: {args.model_list_mode}")
if args.show_terms_of_use:
load_js = get_window_url_params_with_tos_js
else:
load_js = get_window_url_params_js
demo.load(
load_demo,
[url_params],
[
state,
model_selector,
],
_js=load_js,
)
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int)
parser.add_argument(
"--conv-template",
type=str,
default="megrez",
help="The address of the controller",
)
parser.add_argument(
"--share",
action="store_true",
help="Whether to generate a public, shareable link",
)
parser.add_argument(
"--controller-url",
type=str,
default="http://localhost:21001",
help="The address of the controller",
)
parser.add_argument(
"--concurrency-count",
type=int,
default=10,
help="The concurrency count of the gradio queue",
)
parser.add_argument(
"--model-list-mode",
type=str,
default="once",
choices=["once", "reload"],
help="Whether to load the model list once or reload the model list every time",
)
parser.add_argument(
"--moderate",
action="store_true",
help="Enable content moderation to block unsafe inputs",
)
parser.add_argument(
"--show-terms-of-use",
action="store_true",
help="Shows term of use before loading the demo",
)
parser.add_argument(
"--add-chatgpt",
action="store_true",
help="Add OpenAI's ChatGPT models (gpt-3.5-turbo, gpt-4)",
)
parser.add_argument(
"--add-claude",
action="store_true",
help="Add Anthropic's Claude models (claude-2, claude-instant-1)",
)
parser.add_argument(
"--add-palm",
action="store_true",
help="Add Google's PaLM model (PaLM 2 for Chat: chat-bison@001)",
)
parser.add_argument(
"--register-openai-compatible-models",
type=str,
help="Register custom OpenAI API compatible models by loading them from a JSON file",
)
parser.add_argument(
"--gradio-auth-path",
type=str,
help='Set the gradio authentication file path. The file should contain one or more user:password pairs in this format: "u1:p1,u2:p2,u3:p3"',
)
args = parser.parse_args()
logger.info(f"args: {args}")
CONV_TEMPLATE = args.conv_template
# Set global variables
set_global_vars(args.controller_url, args.moderate)
models = get_model_list(
args.controller_url,
args.register_openai_compatible_models,
args.add_chatgpt,
args.add_claude,
args.add_palm,
)
# Set authorization credentials
auth = None
if args.gradio_auth_path is not None:
auth = parse_gradio_auth_creds(args.gradio_auth_path)
# Launch the demo
demo = build_demo(models)
ret = demo.queue(
concurrency_count=args.concurrency_count, status_update_rate=10, api_open=False
).launch(
server_name=args.host,
server_port=args.port,
share=args.share,
max_threads=200,
auth=auth,
)
from IPython import embed;embed()