Spaces:
Runtime error
Runtime error
Upload 6 files
Browse files- .gitattributes +2 -0
- README.md +14 -12
- app.py +144 -141
- baklava.png +3 -0
- bee.jpg +3 -0
- conversation.py +209 -0
- requirements.txt +2 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
baklava.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
bee.jpg filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
-
---
|
2 |
-
title: CosmosLLaVA
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Try CosmosLLaVA
|
3 |
+
emoji: 🔥
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: green
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.28.3
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
short_description: The best open source Turkish vision model
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,141 +1,144 @@
|
|
1 |
-
import spaces
|
2 |
-
|
3 |
-
import time
|
4 |
-
from threading import Thread
|
5 |
-
|
6 |
-
import gradio as gr
|
7 |
-
import torch
|
8 |
-
from PIL import Image
|
9 |
-
from transformers import AutoProcessor
|
10 |
-
from llava.constants import (
|
11 |
-
IMAGE_TOKEN_INDEX,
|
12 |
-
DEFAULT_IMAGE_TOKEN,
|
13 |
-
DEFAULT_IM_START_TOKEN,
|
14 |
-
DEFAULT_IM_END_TOKEN,
|
15 |
-
IMAGE_PLACEHOLDER,
|
16 |
-
)
|
17 |
-
from llava.model.builder import load_pretrained_model
|
18 |
-
from llava.utils import disable_torch_init
|
19 |
-
from llava.mm_utils import (
|
20 |
-
process_images,
|
21 |
-
tokenizer_image_token,
|
22 |
-
get_model_name_from_path,
|
23 |
-
)
|
24 |
-
from io import BytesIO
|
25 |
-
import requests
|
26 |
-
import os
|
27 |
-
from conversation import Conversation, SeparatorStyle
|
28 |
-
|
29 |
-
model_id = "ytu-ce-cosmos/Turkish-LLaVA-v0.1"
|
30 |
-
|
31 |
-
disable_torch_init()
|
32 |
-
model_name = get_model_name_from_path(model_id)
|
33 |
-
tokenizer, model, image_processor, context_len = load_pretrained_model(
|
34 |
-
model_id, None, model_name
|
35 |
-
)
|
36 |
-
|
37 |
-
def load_image(image_file):
|
38 |
-
if image_file.startswith("http") or image_file.startswith("https"):
|
39 |
-
response = requests.get(image_file)
|
40 |
-
image = Image.open(BytesIO(response.content)).convert("RGB")
|
41 |
-
elif os.path.exists(image_file):
|
42 |
-
image = Image.open(image_file).convert("RGB")
|
43 |
-
else:
|
44 |
-
raise FileNotFoundError(f"
|
45 |
-
return image
|
46 |
-
|
47 |
-
def infer_single_image(model_id, image_file, prompt):
|
48 |
-
image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
|
49 |
-
if IMAGE_PLACEHOLDER in prompt:
|
50 |
-
if model.config.mm_use_im_start_end:
|
51 |
-
prompt = re.sub(IMAGE_PLACEHOLDER, image_token_se, prompt)
|
52 |
-
else:
|
53 |
-
prompt = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, prompt)
|
54 |
-
else:
|
55 |
-
if model.config.mm_use_im_start_end:
|
56 |
-
prompt = image_token_se + "\n" + prompt
|
57 |
-
else:
|
58 |
-
prompt = DEFAULT_IMAGE_TOKEN + "\n" + prompt
|
59 |
-
|
60 |
-
conv = Conversation(
|
61 |
-
system="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nSen bir yapay zeka asistanısın. Kullanıcı sana bir görev verecek. Amacın görevi olabildiğince sadık bir şekilde tamamlamak. Görevi yerine getirirken adım adım düşün ve adımlarını gerekçelendir.""",
|
62 |
-
roles=("<|start_header_id|>user<|end_header_id|>\n\n", "<|start_header_id|>assistant<|end_header_id|>\n\n"),
|
63 |
-
version="llama3",
|
64 |
-
messages=[],
|
65 |
-
offset=0,
|
66 |
-
sep_style=SeparatorStyle.MPT,
|
67 |
-
sep="<|eot_id|>",
|
68 |
-
)
|
69 |
-
conv.append_message(conv.roles[0], prompt)
|
70 |
-
conv.append_message(conv.roles[1], None)
|
71 |
-
full_prompt = conv.get_prompt()
|
72 |
-
|
73 |
-
print("full prompt: ", full_prompt)
|
74 |
-
|
75 |
-
image = load_image(image_file)
|
76 |
-
image_tensor = process_images(
|
77 |
-
[image],
|
78 |
-
image_processor,
|
79 |
-
model.config
|
80 |
-
).to(model.device, dtype=torch.float16)
|
81 |
-
|
82 |
-
input_ids = (
|
83 |
-
tokenizer_image_token(full_prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
|
84 |
-
.unsqueeze(0)
|
85 |
-
.cuda()
|
86 |
-
)
|
87 |
-
|
88 |
-
with torch.inference_mode():
|
89 |
-
output_ids = model.generate(
|
90 |
-
input_ids,
|
91 |
-
images=image_tensor,
|
92 |
-
image_sizes=[image.size],
|
93 |
-
do_sample=False,
|
94 |
-
max_new_tokens=512,
|
95 |
-
use_cache=True,
|
96 |
-
)
|
97 |
-
|
98 |
-
output = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
99 |
-
return output
|
100 |
-
|
101 |
-
@spaces.GPU
|
102 |
-
def bot_streaming(message, history):
|
103 |
-
print(message)
|
104 |
-
if message["files"]:
|
105 |
-
if type(message["files"][-1]) == dict:
|
106 |
-
image = message["files"][-1]["path"]
|
107 |
-
else:
|
108 |
-
image = message["files"][-1]
|
109 |
-
else:
|
110 |
-
for hist in history:
|
111 |
-
if type(hist[0]) == tuple:
|
112 |
-
image = hist[0][0]
|
113 |
-
try:
|
114 |
-
if image is None:
|
115 |
-
gr.Error("
|
116 |
-
except NameError:
|
117 |
-
gr.Error("
|
118 |
-
|
119 |
-
prompt = message['text']
|
120 |
-
|
121 |
-
result = infer_single_image(model_id, image, prompt)
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
|
3 |
+
import time
|
4 |
+
from threading import Thread
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import torch
|
8 |
+
from PIL import Image
|
9 |
+
from transformers import AutoProcessor
|
10 |
+
from llava.constants import (
|
11 |
+
IMAGE_TOKEN_INDEX,
|
12 |
+
DEFAULT_IMAGE_TOKEN,
|
13 |
+
DEFAULT_IM_START_TOKEN,
|
14 |
+
DEFAULT_IM_END_TOKEN,
|
15 |
+
IMAGE_PLACEHOLDER,
|
16 |
+
)
|
17 |
+
from llava.model.builder import load_pretrained_model
|
18 |
+
from llava.utils import disable_torch_init
|
19 |
+
from llava.mm_utils import (
|
20 |
+
process_images,
|
21 |
+
tokenizer_image_token,
|
22 |
+
get_model_name_from_path,
|
23 |
+
)
|
24 |
+
from io import BytesIO
|
25 |
+
import requests
|
26 |
+
import os
|
27 |
+
from conversation import Conversation, SeparatorStyle
|
28 |
+
|
29 |
+
model_id = "ytu-ce-cosmos/Turkish-LLaVA-v0.1"
|
30 |
+
|
31 |
+
disable_torch_init()
|
32 |
+
model_name = get_model_name_from_path(model_id)
|
33 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(
|
34 |
+
model_id, None, model_name
|
35 |
+
)
|
36 |
+
|
37 |
+
def load_image(image_file):
|
38 |
+
if image_file.startswith("http") or image_file.startswith("https"):
|
39 |
+
response = requests.get(image_file)
|
40 |
+
image = Image.open(BytesIO(response.content)).convert("RGB")
|
41 |
+
elif os.path.exists(image_file):
|
42 |
+
image = Image.open(image_file).convert("RGB")
|
43 |
+
else:
|
44 |
+
raise FileNotFoundError(f"Görüntü dosyası {image_file} bulunamadı.")
|
45 |
+
return image
|
46 |
+
|
47 |
+
def infer_single_image(model_id, image_file, prompt):
|
48 |
+
image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
|
49 |
+
if IMAGE_PLACEHOLDER in prompt:
|
50 |
+
if model.config.mm_use_im_start_end:
|
51 |
+
prompt = re.sub(IMAGE_PLACEHOLDER, image_token_se, prompt)
|
52 |
+
else:
|
53 |
+
prompt = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, prompt)
|
54 |
+
else:
|
55 |
+
if model.config.mm_use_im_start_end:
|
56 |
+
prompt = image_token_se + "\n" + prompt
|
57 |
+
else:
|
58 |
+
prompt = DEFAULT_IMAGE_TOKEN + "\n" + prompt
|
59 |
+
|
60 |
+
conv = Conversation(
|
61 |
+
system="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nSen bir yapay zeka asistanısın. Kullanıcı sana bir görev verecek. Amacın görevi olabildiğince sadık bir şekilde tamamlamak. Görevi yerine getirirken adım adım düşün ve adımlarını gerekçelendir.""",
|
62 |
+
roles=("<|start_header_id|>user<|end_header_id|>\n\n", "<|start_header_id|>assistant<|end_header_id|>\n\n"),
|
63 |
+
version="llama3",
|
64 |
+
messages=[],
|
65 |
+
offset=0,
|
66 |
+
sep_style=SeparatorStyle.MPT,
|
67 |
+
sep="<|eot_id|>",
|
68 |
+
)
|
69 |
+
conv.append_message(conv.roles[0], prompt)
|
70 |
+
conv.append_message(conv.roles[1], None)
|
71 |
+
full_prompt = conv.get_prompt()
|
72 |
+
|
73 |
+
print("full prompt: ", full_prompt)
|
74 |
+
|
75 |
+
image = load_image(image_file)
|
76 |
+
image_tensor = process_images(
|
77 |
+
[image],
|
78 |
+
image_processor,
|
79 |
+
model.config
|
80 |
+
).to(model.device, dtype=torch.float16)
|
81 |
+
|
82 |
+
input_ids = (
|
83 |
+
tokenizer_image_token(full_prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
|
84 |
+
.unsqueeze(0)
|
85 |
+
.cuda()
|
86 |
+
)
|
87 |
+
|
88 |
+
with torch.inference_mode():
|
89 |
+
output_ids = model.generate(
|
90 |
+
input_ids,
|
91 |
+
images=image_tensor,
|
92 |
+
image_sizes=[image.size],
|
93 |
+
do_sample=False,
|
94 |
+
max_new_tokens=512,
|
95 |
+
use_cache=True,
|
96 |
+
)
|
97 |
+
|
98 |
+
output = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
99 |
+
return output
|
100 |
+
|
101 |
+
@spaces.GPU
|
102 |
+
def bot_streaming(message, history):
|
103 |
+
print(message)
|
104 |
+
if message["files"]:
|
105 |
+
if type(message["files"][-1]) == dict:
|
106 |
+
image = message["files"][-1]["path"]
|
107 |
+
else:
|
108 |
+
image = message["files"][-1]
|
109 |
+
else:
|
110 |
+
for hist in history:
|
111 |
+
if type(hist[0]) == tuple:
|
112 |
+
image = hist[0][0]
|
113 |
+
try:
|
114 |
+
if image is None:
|
115 |
+
gr.Error("LLaVA'nın çalışması için bir resim yüklemeniz gerekir.")
|
116 |
+
except NameError:
|
117 |
+
gr.Error("LLaVA'nın çalışması için bir resim yüklemeniz gerekir.")
|
118 |
+
|
119 |
+
prompt = message['text']
|
120 |
+
|
121 |
+
result = infer_single_image(model_id, image, prompt)
|
122 |
+
|
123 |
+
print(result)
|
124 |
+
|
125 |
+
yield result
|
126 |
+
|
127 |
+
chatbot = gr.Chatbot(scale=1)
|
128 |
+
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Mesaj girin veya dosya yükleyin...", show_label=False)
|
129 |
+
|
130 |
+
with gr.Blocks(fill_height=True) as demo:
|
131 |
+
gr.ChatInterface(
|
132 |
+
fn=bot_streaming,
|
133 |
+
title="LLaVA Llama-3-8B",
|
134 |
+
examples=[{"text": "Çiçeğin üzerinde ne var?", "files": ["./bee.jpg"]},
|
135 |
+
{"text": "Bu tatlı nasıl yapılır?", "files": ["./baklava.png"]}],
|
136 |
+
description="",
|
137 |
+
stop_btn="Stop Generation",
|
138 |
+
multimodal=True,
|
139 |
+
textbox=chat_input,
|
140 |
+
chatbot=chatbot,
|
141 |
+
)
|
142 |
+
|
143 |
+
demo.queue(api_open=False)
|
144 |
+
demo.launch(show_api=False, share=False)
|
baklava.png
ADDED
Git LFS Details
|
bee.jpg
ADDED
Git LFS Details
|
conversation.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
from enum import auto, Enum
|
3 |
+
from typing import List, Tuple
|
4 |
+
import base64
|
5 |
+
from io import BytesIO
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
|
9 |
+
class SeparatorStyle(Enum):
|
10 |
+
"""Different separator style."""
|
11 |
+
SINGLE = auto()
|
12 |
+
TWO = auto()
|
13 |
+
MPT = auto()
|
14 |
+
PLAIN = auto()
|
15 |
+
LLAMA_2 = auto()
|
16 |
+
|
17 |
+
|
18 |
+
@dataclasses.dataclass
|
19 |
+
class Conversation:
|
20 |
+
"""A class that keeps all conversation history."""
|
21 |
+
system: str
|
22 |
+
roles: List[str]
|
23 |
+
messages: List[List[str]]
|
24 |
+
offset: int
|
25 |
+
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
26 |
+
sep: str = "###"
|
27 |
+
sep2: str = None
|
28 |
+
version: str = "Unknown"
|
29 |
+
|
30 |
+
skip_next: bool = False
|
31 |
+
|
32 |
+
def get_prompt(self):
|
33 |
+
messages = self.messages
|
34 |
+
if len(messages) > 0 and type(messages[0][1]) is tuple:
|
35 |
+
messages = self.messages.copy()
|
36 |
+
init_role, init_msg = messages[0].copy()
|
37 |
+
init_msg = init_msg[0].replace("<image>", "").strip()
|
38 |
+
if 'mmtag' in self.version:
|
39 |
+
messages[0] = (init_role, init_msg)
|
40 |
+
messages.insert(0, (self.roles[0], "<Image><image></Image>"))
|
41 |
+
messages.insert(1, (self.roles[1], "Received."))
|
42 |
+
else:
|
43 |
+
messages[0] = (init_role, "<image>\n" + init_msg)
|
44 |
+
|
45 |
+
if self.sep_style == SeparatorStyle.SINGLE:
|
46 |
+
ret = self.system + self.sep
|
47 |
+
for role, message in messages:
|
48 |
+
if message:
|
49 |
+
if type(message) is tuple:
|
50 |
+
message, _, _ = message
|
51 |
+
ret += role + ": " + message + self.sep
|
52 |
+
else:
|
53 |
+
ret += role + ":"
|
54 |
+
elif self.sep_style == SeparatorStyle.TWO:
|
55 |
+
seps = [self.sep, self.sep2]
|
56 |
+
ret = self.system + seps[0]
|
57 |
+
for i, (role, message) in enumerate(messages):
|
58 |
+
if message:
|
59 |
+
if type(message) is tuple:
|
60 |
+
message, _, _ = message
|
61 |
+
ret += role + ": " + message + seps[i % 2]
|
62 |
+
else:
|
63 |
+
ret += role + ":"
|
64 |
+
elif self.sep_style == SeparatorStyle.MPT:
|
65 |
+
ret = self.system + self.sep
|
66 |
+
for role, message in messages:
|
67 |
+
if message:
|
68 |
+
if type(message) is tuple:
|
69 |
+
message, _, _ = message
|
70 |
+
ret += role + message + self.sep
|
71 |
+
else:
|
72 |
+
ret += role
|
73 |
+
elif self.sep_style == SeparatorStyle.LLAMA_2:
|
74 |
+
wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n" if len(msg) > 0 else msg
|
75 |
+
wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
|
76 |
+
ret = ""
|
77 |
+
|
78 |
+
for i, (role, message) in enumerate(messages):
|
79 |
+
if i == 0:
|
80 |
+
assert message, "first message should not be none"
|
81 |
+
assert role == self.roles[0], "first message should come from user"
|
82 |
+
if message:
|
83 |
+
if type(message) is tuple:
|
84 |
+
message, _, _ = message
|
85 |
+
if i == 0: message = wrap_sys(self.system) + message
|
86 |
+
if i % 2 == 0:
|
87 |
+
message = wrap_inst(message)
|
88 |
+
ret += self.sep + message
|
89 |
+
else:
|
90 |
+
ret += " " + message + " " + self.sep2
|
91 |
+
else:
|
92 |
+
ret += ""
|
93 |
+
ret = ret.lstrip(self.sep)
|
94 |
+
elif self.sep_style == SeparatorStyle.PLAIN:
|
95 |
+
seps = [self.sep, self.sep2]
|
96 |
+
ret = self.system
|
97 |
+
for i, (role, message) in enumerate(messages):
|
98 |
+
if message:
|
99 |
+
if type(message) is tuple:
|
100 |
+
message, _, _ = message
|
101 |
+
ret += message + seps[i % 2]
|
102 |
+
else:
|
103 |
+
ret += ""
|
104 |
+
else:
|
105 |
+
raise ValueError(f"Invalid style: {self.sep_style}")
|
106 |
+
|
107 |
+
return ret
|
108 |
+
|
109 |
+
def append_message(self, role, message):
|
110 |
+
self.messages.append([role, message])
|
111 |
+
|
112 |
+
def process_image(self, image, image_process_mode, return_pil=False, image_format='PNG', max_len=1344, min_len=672):
|
113 |
+
if image_process_mode == "Pad":
|
114 |
+
def expand2square(pil_img, background_color=(122, 116, 104)):
|
115 |
+
width, height = pil_img.size
|
116 |
+
if width == height:
|
117 |
+
return pil_img
|
118 |
+
elif width > height:
|
119 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
120 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
121 |
+
return result
|
122 |
+
else:
|
123 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
124 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
125 |
+
return result
|
126 |
+
|
127 |
+
image = expand2square(image)
|
128 |
+
elif image_process_mode in ["Default", "Crop"]:
|
129 |
+
pass
|
130 |
+
elif image_process_mode == "Resize":
|
131 |
+
image = image.resize((336, 336))
|
132 |
+
else:
|
133 |
+
raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
|
134 |
+
if max(image.size) > max_len:
|
135 |
+
max_hw, min_hw = max(image.size), min(image.size)
|
136 |
+
aspect_ratio = max_hw / min_hw
|
137 |
+
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
|
138 |
+
longest_edge = int(shortest_edge * aspect_ratio)
|
139 |
+
W, H = image.size
|
140 |
+
if H > W:
|
141 |
+
H, W = longest_edge, shortest_edge
|
142 |
+
else:
|
143 |
+
H, W = shortest_edge, longest_edge
|
144 |
+
image = image.resize((W, H))
|
145 |
+
if return_pil:
|
146 |
+
return image
|
147 |
+
else:
|
148 |
+
buffered = BytesIO()
|
149 |
+
image.save(buffered, format=image_format)
|
150 |
+
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
|
151 |
+
return img_b64_str
|
152 |
+
|
153 |
+
def get_images(self, return_pil=False):
|
154 |
+
images = []
|
155 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
156 |
+
if i % 2 == 0:
|
157 |
+
if type(msg) is tuple:
|
158 |
+
msg, image, image_process_mode = msg
|
159 |
+
image = self.process_image(image, image_process_mode, return_pil=return_pil)
|
160 |
+
images.append(image)
|
161 |
+
return images
|
162 |
+
|
163 |
+
def to_gradio_chatbot(self):
|
164 |
+
ret = []
|
165 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
166 |
+
if i % 2 == 0:
|
167 |
+
if type(msg) is tuple:
|
168 |
+
msg, image, image_process_mode = msg
|
169 |
+
img_b64_str = self.process_image(
|
170 |
+
image, "Default", return_pil=False,
|
171 |
+
image_format='JPEG')
|
172 |
+
img_str = f'<img src="data:image/jpeg;base64,{img_b64_str}" alt="user upload image" />'
|
173 |
+
msg = img_str + msg.replace('<image>', '').strip()
|
174 |
+
ret.append([msg, None])
|
175 |
+
else:
|
176 |
+
ret.append([msg, None])
|
177 |
+
else:
|
178 |
+
ret[-1][-1] = msg
|
179 |
+
return ret
|
180 |
+
|
181 |
+
def copy(self):
|
182 |
+
return Conversation(
|
183 |
+
system=self.system,
|
184 |
+
roles=self.roles,
|
185 |
+
messages=[[x, y] for x, y in self.messages],
|
186 |
+
offset=self.offset,
|
187 |
+
sep_style=self.sep_style,
|
188 |
+
sep=self.sep,
|
189 |
+
sep2=self.sep2,
|
190 |
+
version=self.version)
|
191 |
+
|
192 |
+
def dict(self):
|
193 |
+
if len(self.get_images()) > 0:
|
194 |
+
return {
|
195 |
+
"system": self.system,
|
196 |
+
"roles": self.roles,
|
197 |
+
"messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
|
198 |
+
"offset": self.offset,
|
199 |
+
"sep": self.sep,
|
200 |
+
"sep2": self.sep2,
|
201 |
+
}
|
202 |
+
return {
|
203 |
+
"system": self.system,
|
204 |
+
"roles": self.roles,
|
205 |
+
"messages": self.messages,
|
206 |
+
"offset": self.offset,
|
207 |
+
"sep": self.sep,
|
208 |
+
"sep2": self.sep2,
|
209 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
llava-torch
|
2 |
+
spaces
|