Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- RealDehazing_FPro.yml +135 -0
- RealDemoiring_FPro.yml +135 -0
- model.py +232 -110
RealDehazing_FPro.yml
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# general settings
|
| 2 |
+
name: Dehazing_FPro
|
| 3 |
+
model_type: ImageCleanModel
|
| 4 |
+
scale: 1
|
| 5 |
+
num_gpu: 8 # set num_gpu: 0 for cpu mode
|
| 6 |
+
manual_seed: 100
|
| 7 |
+
|
| 8 |
+
# dataset and data loader settings
|
| 9 |
+
datasets:
|
| 10 |
+
train:
|
| 11 |
+
name: TrainSet
|
| 12 |
+
type: Dataset_PairedImage_dehazeSOT
|
| 13 |
+
dataroot_gt: /mnt/sda/zsh/dataset/haze
|
| 14 |
+
dataroot_lq: /mnt/sda/zsh/dataset/haze
|
| 15 |
+
geometric_augs: true
|
| 16 |
+
|
| 17 |
+
filename_tmpl: '{}'
|
| 18 |
+
io_backend:
|
| 19 |
+
type: disk
|
| 20 |
+
|
| 21 |
+
# data loader
|
| 22 |
+
use_shuffle: true
|
| 23 |
+
num_worker_per_gpu: 8
|
| 24 |
+
batch_size_per_gpu: 8
|
| 25 |
+
|
| 26 |
+
## ------- Training on single fixed-patch size 128x128---------
|
| 27 |
+
mini_batch_sizes: [2]
|
| 28 |
+
iters: [300000]
|
| 29 |
+
gt_size: 256
|
| 30 |
+
gt_sizes: [256]
|
| 31 |
+
## ------------------------------------------------------------
|
| 32 |
+
|
| 33 |
+
dataset_enlarge_ratio: 1
|
| 34 |
+
prefetch_mode: ~
|
| 35 |
+
|
| 36 |
+
val:
|
| 37 |
+
name: ValSet
|
| 38 |
+
type: Dataset_PairedImage_dehazeSOT
|
| 39 |
+
dataroot_gt: /mnt/sda/zsh/dataset/haze
|
| 40 |
+
dataroot_lq: /mnt/sda/zsh/dataset/haze
|
| 41 |
+
gt_size: 256
|
| 42 |
+
io_backend:
|
| 43 |
+
type: disk
|
| 44 |
+
|
| 45 |
+
# network structures
|
| 46 |
+
|
| 47 |
+
network_g:
|
| 48 |
+
type: FPro
|
| 49 |
+
inp_channels: 3
|
| 50 |
+
out_channels: 3
|
| 51 |
+
# input_res: 128
|
| 52 |
+
dim: 48
|
| 53 |
+
# num_blocks: [4,6,6,8]
|
| 54 |
+
num_blocks: [2,3,6]
|
| 55 |
+
# num_refinement_blocks: 4
|
| 56 |
+
num_refinement_blocks: 2
|
| 57 |
+
# heads: [1,2,4,8]
|
| 58 |
+
heads: [2,4,8]
|
| 59 |
+
# ffn_expansion_factor: 2.66
|
| 60 |
+
ffn_expansion_factor: 3
|
| 61 |
+
bias: False
|
| 62 |
+
LayerNorm_type: WithBias
|
| 63 |
+
dual_pixel_task: False
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
# path
|
| 67 |
+
path:
|
| 68 |
+
pretrain_network_g: ~
|
| 69 |
+
strict_load_g: true
|
| 70 |
+
resume_state: ~
|
| 71 |
+
|
| 72 |
+
# training settings
|
| 73 |
+
train:
|
| 74 |
+
total_iter: 300000
|
| 75 |
+
warmup_iter: -1 # no warm up
|
| 76 |
+
use_grad_clip: true
|
| 77 |
+
|
| 78 |
+
# Split 300k iterations into two cycles.
|
| 79 |
+
# 1st cycle: fixed 3e-4 LR for 92k iters.
|
| 80 |
+
# 2nd cycle: cosine annealing (3e-4 to 1e-6) for 208k iters.
|
| 81 |
+
scheduler:
|
| 82 |
+
type: CosineAnnealingRestartCyclicLR
|
| 83 |
+
periods: [92000, 208000]
|
| 84 |
+
restart_weights: [1,1]
|
| 85 |
+
eta_mins: [0.0003,0.000001]
|
| 86 |
+
|
| 87 |
+
mixing_augs:
|
| 88 |
+
mixup: true
|
| 89 |
+
mixup_beta: 1.2
|
| 90 |
+
use_identity: true
|
| 91 |
+
|
| 92 |
+
optim_g:
|
| 93 |
+
type: AdamW
|
| 94 |
+
lr: !!float 3e-4
|
| 95 |
+
weight_decay: !!float 1e-4
|
| 96 |
+
betas: [0.9, 0.999]
|
| 97 |
+
|
| 98 |
+
# losses
|
| 99 |
+
pixel_opt:
|
| 100 |
+
type: L1Loss
|
| 101 |
+
loss_weight: 1
|
| 102 |
+
reduction: mean
|
| 103 |
+
fft_loss_opt:
|
| 104 |
+
type: FFTLoss
|
| 105 |
+
loss_weight: 0.1
|
| 106 |
+
reduction: mean
|
| 107 |
+
|
| 108 |
+
# validation settings
|
| 109 |
+
val:
|
| 110 |
+
window_size: 8
|
| 111 |
+
val_freq: !!float 4e3
|
| 112 |
+
save_img: false
|
| 113 |
+
rgb2bgr: true
|
| 114 |
+
use_image: false
|
| 115 |
+
max_minibatch: 8
|
| 116 |
+
|
| 117 |
+
metrics:
|
| 118 |
+
psnr: # metric name, can be arbitrary
|
| 119 |
+
type: calculate_psnr
|
| 120 |
+
crop_border: 0
|
| 121 |
+
test_y_channel: false
|
| 122 |
+
|
| 123 |
+
# logging settings
|
| 124 |
+
logger:
|
| 125 |
+
print_freq: 1000
|
| 126 |
+
save_checkpoint_freq: !!float 4e3
|
| 127 |
+
use_tb_logger: true
|
| 128 |
+
wandb:
|
| 129 |
+
project: ~
|
| 130 |
+
resume_id: ~
|
| 131 |
+
|
| 132 |
+
# dist training settings
|
| 133 |
+
dist_params:
|
| 134 |
+
backend: nccl
|
| 135 |
+
port: 29500
|
RealDemoiring_FPro.yml
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# general settings
|
| 2 |
+
name: RealDemoiring_Restormer
|
| 3 |
+
model_type: ImageCleanModel
|
| 4 |
+
scale: 1
|
| 5 |
+
num_gpu: 8 # set num_gpu: 0 for cpu mode
|
| 6 |
+
manual_seed: 100
|
| 7 |
+
|
| 8 |
+
# dataset and data loader settings
|
| 9 |
+
datasets:
|
| 10 |
+
train:
|
| 11 |
+
name: TrainSet
|
| 12 |
+
type: Dataset_PairedImage_denseHaze
|
| 13 |
+
dataroot_gt: /home/ubuntu/zsh/datasets/TIP18/process/train/thin_target
|
| 14 |
+
dataroot_lq: /home/ubuntu/zsh/datasets/TIP18/process/train/thin_source
|
| 15 |
+
geometric_augs: False
|
| 16 |
+
|
| 17 |
+
filename_tmpl: '{}'
|
| 18 |
+
io_backend:
|
| 19 |
+
type: disk
|
| 20 |
+
|
| 21 |
+
# data loader
|
| 22 |
+
use_shuffle: true
|
| 23 |
+
num_worker_per_gpu: 8
|
| 24 |
+
batch_size_per_gpu: 8
|
| 25 |
+
|
| 26 |
+
## ------- Training on single fixed-patch size 128x128---------
|
| 27 |
+
mini_batch_sizes: [2]
|
| 28 |
+
iters: [300000]
|
| 29 |
+
gt_size: 256
|
| 30 |
+
gt_sizes: [256]
|
| 31 |
+
## ------------------------------------------------------------
|
| 32 |
+
|
| 33 |
+
dataset_enlarge_ratio: 1
|
| 34 |
+
prefetch_mode: ~
|
| 35 |
+
|
| 36 |
+
val:
|
| 37 |
+
name: ValSet
|
| 38 |
+
type: Dataset_PairedImage_denseHaze
|
| 39 |
+
dataroot_gt: /home/ubuntu/zsh/datasets/TIP18/process/val/thin_target
|
| 40 |
+
dataroot_lq: /home/ubuntu/zsh/datasets/TIP18/process/val/thin_source
|
| 41 |
+
gt_size: 256
|
| 42 |
+
io_backend:
|
| 43 |
+
type: disk
|
| 44 |
+
|
| 45 |
+
# network structures
|
| 46 |
+
|
| 47 |
+
network_g:
|
| 48 |
+
type: Restormer
|
| 49 |
+
inp_channels: 3
|
| 50 |
+
out_channels: 3
|
| 51 |
+
# input_res: 128
|
| 52 |
+
dim: 48
|
| 53 |
+
# num_blocks: [4,6,6,8]
|
| 54 |
+
num_blocks: [2,3,6]
|
| 55 |
+
# num_refinement_blocks: 4
|
| 56 |
+
num_refinement_blocks: 2
|
| 57 |
+
# heads: [1,2,4,8]
|
| 58 |
+
heads: [2,4,8]
|
| 59 |
+
# ffn_expansion_factor: 2.66
|
| 60 |
+
ffn_expansion_factor: 3
|
| 61 |
+
bias: False
|
| 62 |
+
LayerNorm_type: WithBias
|
| 63 |
+
dual_pixel_task: False
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
# path
|
| 67 |
+
path:
|
| 68 |
+
pretrain_network_g: ~
|
| 69 |
+
strict_load_g: true
|
| 70 |
+
resume_state: ~
|
| 71 |
+
|
| 72 |
+
# training settings
|
| 73 |
+
train:
|
| 74 |
+
total_iter: 300000
|
| 75 |
+
warmup_iter: -1 # no warm up
|
| 76 |
+
use_grad_clip: true
|
| 77 |
+
|
| 78 |
+
# Split 300k iterations into two cycles.
|
| 79 |
+
# 1st cycle: fixed 3e-4 LR for 92k iters.
|
| 80 |
+
# 2nd cycle: cosine annealing (3e-4 to 1e-6) for 208k iters.
|
| 81 |
+
scheduler:
|
| 82 |
+
type: CosineAnnealingRestartCyclicLR
|
| 83 |
+
periods: [92000, 208000]
|
| 84 |
+
restart_weights: [1,1]
|
| 85 |
+
eta_mins: [0.0003,0.000001]
|
| 86 |
+
|
| 87 |
+
mixing_augs:
|
| 88 |
+
mixup: true
|
| 89 |
+
mixup_beta: 1.2
|
| 90 |
+
use_identity: true
|
| 91 |
+
|
| 92 |
+
optim_g:
|
| 93 |
+
type: AdamW
|
| 94 |
+
lr: !!float 3e-4
|
| 95 |
+
weight_decay: !!float 1e-4
|
| 96 |
+
betas: [0.9, 0.999]
|
| 97 |
+
|
| 98 |
+
# losses
|
| 99 |
+
pixel_opt:
|
| 100 |
+
type: L1Loss
|
| 101 |
+
loss_weight: 1
|
| 102 |
+
reduction: mean
|
| 103 |
+
fft_loss_opt:
|
| 104 |
+
type: FFTLoss
|
| 105 |
+
loss_weight: 0.1
|
| 106 |
+
reduction: mean
|
| 107 |
+
|
| 108 |
+
# validation settings
|
| 109 |
+
val:
|
| 110 |
+
window_size: 8
|
| 111 |
+
val_freq: !!float 4e3
|
| 112 |
+
save_img: false
|
| 113 |
+
rgb2bgr: true
|
| 114 |
+
use_image: false
|
| 115 |
+
max_minibatch: 8
|
| 116 |
+
|
| 117 |
+
metrics:
|
| 118 |
+
psnr: # metric name, can be arbitrary
|
| 119 |
+
type: calculate_psnr
|
| 120 |
+
crop_border: 0
|
| 121 |
+
test_y_channel: false
|
| 122 |
+
|
| 123 |
+
# logging settings
|
| 124 |
+
logger:
|
| 125 |
+
print_freq: 1000
|
| 126 |
+
save_checkpoint_freq: !!float 4e3
|
| 127 |
+
use_tb_logger: true
|
| 128 |
+
wandb:
|
| 129 |
+
project: ~
|
| 130 |
+
resume_id: ~
|
| 131 |
+
|
| 132 |
+
# dist training settings
|
| 133 |
+
dist_params:
|
| 134 |
+
backend: nccl
|
| 135 |
+
port: 29500
|
model.py
CHANGED
|
@@ -1,83 +1,165 @@
|
|
| 1 |
-
# model.py -
|
| 2 |
import yaml, torch, math, numpy as np
|
| 3 |
import torch.nn.functional as F
|
| 4 |
from PIL import Image
|
| 5 |
from io import BytesIO
|
| 6 |
from basicsr.models.archs.FPro_arch import FPro
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
dehaze_model = None
|
| 13 |
demoiring_model = None
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
| 18 |
_, C, H, W = imgtensor.shape
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
wstarts.pop()
|
| 26 |
-
wstarts.append(W - crop_size)
|
| 27 |
starts = []
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
starts.append((hs, ws))
|
| 33 |
-
split_data.append(cimgdata)
|
| 34 |
-
return split_data, starts
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
center_h = H / 2
|
| 40 |
-
center_w = W / 2
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
for h in range(H):
|
| 45 |
-
for w in range(W):
|
| 46 |
-
score[:, :, h, w] = 1.0 / (math.sqrt((h - center_h) ** 2 + (w - center_w) ** 2 + 1e-6))
|
| 47 |
-
return score
|
| 48 |
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
-
|
| 58 |
-
hs, ws
|
| 59 |
-
merge_img[:, :, hs:hs + crop_size, ws:ws + crop_size] += scoremap * simg
|
| 60 |
-
tot_score[:, :, hs:hs + crop_size, ws:ws + crop_size] += scoremap
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
|
|
|
| 64 |
|
| 65 |
|
| 66 |
def init():
|
| 67 |
-
"""
|
| 68 |
global dehaze_model, demoiring_model
|
| 69 |
|
|
|
|
|
|
|
|
|
|
| 70 |
# 初始化去雾模型
|
| 71 |
try:
|
| 72 |
-
print("
|
| 73 |
-
dehaze_cfg = yaml.safe_load(open("
|
| 74 |
dehaze_cfg.pop('type', None)
|
| 75 |
dehaze_model = FPro(**dehaze_cfg)
|
| 76 |
-
|
|
|
|
| 77 |
dehaze_ckpt = torch.load("dehaze.pth", map_location='cpu')
|
| 78 |
dehaze_model.load_state_dict(dehaze_ckpt['params'])
|
|
|
|
| 79 |
dehaze_model.eval()
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
print("去雾模型加载成功!")
|
| 82 |
except Exception as e:
|
| 83 |
print(f"去雾模型加载失败: {e}")
|
|
@@ -85,77 +167,76 @@ def init():
|
|
| 85 |
|
| 86 |
# 初始化去摩尔纹模型
|
| 87 |
try:
|
| 88 |
-
print("
|
| 89 |
-
# 尝试加载YAML配置文件
|
| 90 |
try:
|
| 91 |
-
demoiring_cfg = yaml.safe_load(open("
|
| 92 |
demoiring_cfg.pop('type', None)
|
| 93 |
except FileNotFoundError:
|
| 94 |
-
# 如果没有单独的配置文件,使用默认配置
|
| 95 |
-
print("未找到去摩尔纹配置文件,使用默认配置")
|
| 96 |
demoiring_cfg = {
|
| 97 |
-
'inp_channels': 3,
|
| 98 |
-
'
|
| 99 |
-
'
|
| 100 |
-
'
|
| 101 |
-
'num_refinement_blocks': 4,
|
| 102 |
-
'heads': [1, 2, 4, 8],
|
| 103 |
-
'ffn_expansion_factor': 2.66,
|
| 104 |
-
'bias': False,
|
| 105 |
-
'LayerNorm_type': 'WithBias',
|
| 106 |
-
'dual_pixel_task': False
|
| 107 |
}
|
| 108 |
|
| 109 |
demoiring_model = FPro(**demoiring_cfg)
|
| 110 |
-
demoiring_model = demoiring_model.to(device)
|
| 111 |
demoiring_ckpt = torch.load("deblur.pth", map_location='cpu')
|
| 112 |
demoiring_model.load_state_dict(demoiring_ckpt['params'])
|
|
|
|
| 113 |
demoiring_model.eval()
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
print("去摩尔纹模型加载成功!")
|
| 116 |
except Exception as e:
|
| 117 |
print(f"去摩尔纹模型加载失败: {e}")
|
| 118 |
demoiring_model = None
|
| 119 |
|
|
|
|
|
|
|
| 120 |
|
| 121 |
-
def inference(body: bytes, task_type: str = "dehaze") -> bytes:
|
| 122 |
-
"""
|
| 123 |
-
推理函数:支持去雾和去摩尔纹
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
|
| 129 |
-
|
| 130 |
-
处理后的图像字节流
|
| 131 |
-
"""
|
| 132 |
-
# 选择对应的模型
|
| 133 |
if task_type == "dehaze":
|
| 134 |
if dehaze_model is None:
|
| 135 |
raise Exception("去雾模型未加载")
|
| 136 |
model = dehaze_model
|
| 137 |
-
# 去雾任务的参数
|
| 138 |
-
crop_size_arg = 256
|
| 139 |
-
overlap_size_arg = 158
|
| 140 |
elif task_type == "demoiring":
|
| 141 |
if demoiring_model is None:
|
| 142 |
raise Exception("去摩尔纹模型未加载")
|
| 143 |
model = demoiring_model
|
| 144 |
-
# 去摩尔纹任务的参数(根据第一个代码)
|
| 145 |
-
crop_size_arg = 256
|
| 146 |
-
overlap_size_arg = 200
|
| 147 |
else:
|
| 148 |
raise Exception(f"不支持的任务类型: {task_type}")
|
| 149 |
|
| 150 |
-
#
|
| 151 |
img = Image.open(BytesIO(body)).convert("RGB")
|
| 152 |
-
|
| 153 |
-
t = torch.from_numpy(arr).permute(2, 0, 1).unsqueeze(0)
|
| 154 |
|
| 155 |
-
#
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
-
# Padding
|
| 159 |
factor = 8
|
| 160 |
h, w = t.shape[2], t.shape[3]
|
| 161 |
H = ((h + factor) // factor) * factor
|
|
@@ -165,52 +246,93 @@ def inference(body: bytes, task_type: str = "dehaze") -> bytes:
|
|
| 165 |
t = F.pad(t, (0, padw, 0, padh), 'reflect')
|
| 166 |
|
| 167 |
B, C, H, W = t.shape
|
|
|
|
| 168 |
|
| 169 |
-
#
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
with torch.no_grad():
|
|
|
|
| 172 |
restored = model(t)
|
| 173 |
else:
|
| 174 |
-
#
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
-
|
| 178 |
with torch.no_grad():
|
| 179 |
-
for i,
|
| 180 |
-
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
# 合并结果
|
| 184 |
-
|
| 185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
-
#
|
| 188 |
-
|
|
|
|
|
|
|
|
|
|
| 189 |
|
| 190 |
-
# 输出处理
|
| 191 |
-
merged = torch.clamp(restored, 0, 1).squeeze(0).permute(1, 2, 0).numpy()
|
| 192 |
merged = (merged * 255).astype(np.uint8)
|
| 193 |
|
| 194 |
-
# 输出
|
| 195 |
out_img = Image.fromarray(merged)
|
| 196 |
buf = BytesIO()
|
| 197 |
out_img.save(buf, format="PNG")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
return buf.getvalue()
|
| 199 |
|
| 200 |
|
| 201 |
def dehaze_inference(body: bytes) -> bytes:
|
| 202 |
-
"""
|
| 203 |
-
return
|
| 204 |
|
| 205 |
|
| 206 |
def demoiring_inference(body: bytes) -> bytes:
|
| 207 |
-
"""
|
| 208 |
-
return
|
| 209 |
|
| 210 |
|
| 211 |
def get_model_status():
|
| 212 |
-
"""
|
| 213 |
return {
|
| 214 |
"dehaze_model_loaded": dehaze_model is not None,
|
| 215 |
-
"demoiring_model_loaded": demoiring_model is not None
|
| 216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# model.py - 性能优化版本
|
| 2 |
import yaml, torch, math, numpy as np
|
| 3 |
import torch.nn.functional as F
|
| 4 |
from PIL import Image
|
| 5 |
from io import BytesIO
|
| 6 |
from basicsr.models.archs.FPro_arch import FPro
|
| 7 |
+
import time
|
| 8 |
+
import cv2
|
| 9 |
+
|
| 10 |
+
# 检测可用设备
|
| 11 |
+
if torch.cuda.is_available():
|
| 12 |
+
device = torch.device('cuda')
|
| 13 |
+
print("使用 GPU 加速")
|
| 14 |
+
else:
|
| 15 |
+
device = torch.device('cpu')
|
| 16 |
+
print("使用 CPU 计算")
|
| 17 |
+
|
| 18 |
+
# 全局变量
|
| 19 |
dehaze_model = None
|
| 20 |
demoiring_model = None
|
| 21 |
|
| 22 |
+
# 性能配置
|
| 23 |
+
PERFORMANCE_CONFIG = {
|
| 24 |
+
'max_resolution': 1024, # 最大处理分辨率
|
| 25 |
+
'min_crop_size': 128, # 最小切块大小
|
| 26 |
+
'use_fast_mode': True, # 快速模式
|
| 27 |
+
'enable_torch_compile': True, # 启用模型编译(PyTorch 2.0+)
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def optimize_image_size(image, max_size=1024):
|
| 32 |
+
"""智能图像尺寸优化"""
|
| 33 |
+
w, h = image.size
|
| 34 |
+
|
| 35 |
+
# 如果图像已经很小,直接返回
|
| 36 |
+
if max(w, h) <= max_size:
|
| 37 |
+
return image, 1.0
|
| 38 |
+
|
| 39 |
+
# 计算缩放比例
|
| 40 |
+
scale = max_size / max(w, h)
|
| 41 |
+
new_w = int(w * scale)
|
| 42 |
+
new_h = int(h * scale)
|
| 43 |
+
|
| 44 |
+
# 确保尺寸是8的倍数
|
| 45 |
+
new_w = ((new_w + 7) // 8) * 8
|
| 46 |
+
new_h = ((new_h + 7) // 8) * 8
|
| 47 |
+
|
| 48 |
+
resized_image = image.resize((new_w, new_h), Image.LANCZOS)
|
| 49 |
+
return resized_image, scale
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def smart_crop_strategy(H, W, min_size=128, max_size=512):
|
| 53 |
+
"""智能切块策略"""
|
| 54 |
+
# 根据图像大小动态调整切块大小
|
| 55 |
+
if max(H, W) <= max_size:
|
| 56 |
+
return H, W, 0 # 不需要切块
|
| 57 |
+
|
| 58 |
+
# 计算最优切块大小
|
| 59 |
+
crop_size = min(max_size, max(min_size, min(H, W) // 2))
|
| 60 |
+
crop_size = ((crop_size + 7) // 8) * 8 # 确保是8的倍数
|
| 61 |
+
|
| 62 |
+
# 动态调整重叠大小
|
| 63 |
+
overlap = min(crop_size // 4, 64)
|
| 64 |
|
| 65 |
+
return crop_size, crop_size, overlap
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def fast_splitimage(imgtensor, crop_size=256, overlap_size=64):
|
| 69 |
+
"""优化的切块函数 - 减少内存分配"""
|
| 70 |
_, C, H, W = imgtensor.shape
|
| 71 |
+
|
| 72 |
+
# 如果图像小于切块大小,直接返回
|
| 73 |
+
if H <= crop_size and W <= crop_size:
|
| 74 |
+
return [imgtensor], [(0, 0)]
|
| 75 |
+
|
| 76 |
+
step = crop_size - overlap_size
|
|
|
|
|
|
|
| 77 |
starts = []
|
| 78 |
+
|
| 79 |
+
# 预计算所有位置
|
| 80 |
+
h_positions = list(range(0, H - crop_size + 1, step))
|
| 81 |
+
w_positions = list(range(0, W - crop_size + 1, step))
|
| 82 |
+
|
| 83 |
+
# 确保覆盖边界
|
| 84 |
+
if h_positions[-1] + crop_size < H:
|
| 85 |
+
h_positions.append(H - crop_size)
|
| 86 |
+
if w_positions[-1] + crop_size < W:
|
| 87 |
+
w_positions.append(W - crop_size)
|
| 88 |
+
|
| 89 |
+
# 生成切块(延迟计算,减少内存占用)
|
| 90 |
+
for hs in h_positions:
|
| 91 |
+
for ws in w_positions:
|
| 92 |
starts.append((hs, ws))
|
|
|
|
|
|
|
| 93 |
|
| 94 |
+
return None, starts # 返回None表示延迟切块
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def fast_mergeimage(results, starts, crop_size, H, W, C, B=1):
|
| 98 |
+
"""优化的合并函数 - 使用简化权重"""
|
| 99 |
+
merge_img = torch.zeros((B, C, H, W), device=device)
|
| 100 |
+
weight_sum = torch.zeros((B, C, H, W), device=device)
|
| 101 |
|
| 102 |
+
# 使用简单的线性权重而不是复杂的距离权重
|
| 103 |
+
edge_fade = crop_size // 8 # 边缘渐变区域
|
|
|
|
|
|
|
| 104 |
|
| 105 |
+
for result, (hs, ws) in zip(results, starts):
|
| 106 |
+
result = result.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
+
# 创建简单权重图
|
| 109 |
+
weight = torch.ones_like(result)
|
| 110 |
|
| 111 |
+
# 只在边缘应用权重衰减
|
| 112 |
+
if edge_fade > 0:
|
| 113 |
+
# 上边缘
|
| 114 |
+
weight[:, :, :edge_fade, :] *= torch.linspace(0.1, 1.0, edge_fade).view(1, 1, -1, 1)
|
| 115 |
+
# 下边缘
|
| 116 |
+
weight[:, :, -edge_fade:, :] *= torch.linspace(1.0, 0.1, edge_fade).view(1, 1, -1, 1)
|
| 117 |
+
# 左边缘
|
| 118 |
+
weight[:, :, :, :edge_fade] *= torch.linspace(0.1, 1.0, edge_fade).view(1, 1, 1, -1)
|
| 119 |
+
# 右边缘
|
| 120 |
+
weight[:, :, :, -edge_fade:] *= torch.linspace(1.0, 0.1, edge_fade).view(1, 1, 1, -1)
|
| 121 |
|
| 122 |
+
merge_img[:, :, hs:hs + crop_size, ws:ws + crop_size] += weight * result
|
| 123 |
+
weight_sum[:, :, hs:hs + crop_size, ws:ws + crop_size] += weight
|
|
|
|
|
|
|
| 124 |
|
| 125 |
+
# 避免除零
|
| 126 |
+
weight_sum = torch.clamp(weight_sum, min=1e-8)
|
| 127 |
+
return merge_img / weight_sum
|
| 128 |
|
| 129 |
|
| 130 |
def init():
|
| 131 |
+
"""优化的模型初始化"""
|
| 132 |
global dehaze_model, demoiring_model
|
| 133 |
|
| 134 |
+
print("正在初始化模型...")
|
| 135 |
+
start_time = time.time()
|
| 136 |
+
|
| 137 |
# 初始化去雾模型
|
| 138 |
try:
|
| 139 |
+
print("加载去雾模型...")
|
| 140 |
+
dehaze_cfg = yaml.safe_load(open("RealDehazing_FPro.yml", "r"))['network_g']
|
| 141 |
dehaze_cfg.pop('type', None)
|
| 142 |
dehaze_model = FPro(**dehaze_cfg)
|
| 143 |
+
|
| 144 |
+
# 加载权重
|
| 145 |
dehaze_ckpt = torch.load("dehaze.pth", map_location='cpu')
|
| 146 |
dehaze_model.load_state_dict(dehaze_ckpt['params'])
|
| 147 |
+
dehaze_model.to(device)
|
| 148 |
dehaze_model.eval()
|
| 149 |
+
|
| 150 |
+
# 模型编译优化 (PyTorch 2.0+)
|
| 151 |
+
if PERFORMANCE_CONFIG['enable_torch_compile'] and hasattr(torch, 'compile'):
|
| 152 |
+
try:
|
| 153 |
+
dehaze_model = torch.compile(dehaze_model)
|
| 154 |
+
print("去雾模型编译优化成功")
|
| 155 |
+
except Exception as e:
|
| 156 |
+
print(f"模型编译失败: {e}")
|
| 157 |
+
|
| 158 |
+
# 预热模型
|
| 159 |
+
with torch.no_grad():
|
| 160 |
+
dummy_input = torch.randn(1, 3, 256, 256).to(device)
|
| 161 |
+
_ = dehaze_model(dummy_input)
|
| 162 |
+
|
| 163 |
print("去雾模型加载成功!")
|
| 164 |
except Exception as e:
|
| 165 |
print(f"去雾模型加载失败: {e}")
|
|
|
|
| 167 |
|
| 168 |
# 初始化去摩尔纹模型
|
| 169 |
try:
|
| 170 |
+
print("加载去摩尔纹模型...")
|
|
|
|
| 171 |
try:
|
| 172 |
+
demoiring_cfg = yaml.safe_load(open("RealDemoiring_FPro.yml", "r"))['network_g']
|
| 173 |
demoiring_cfg.pop('type', None)
|
| 174 |
except FileNotFoundError:
|
|
|
|
|
|
|
| 175 |
demoiring_cfg = {
|
| 176 |
+
'inp_channels': 3, 'out_channels': 3, 'dim': 48,
|
| 177 |
+
'num_blocks': [4, 6, 6, 8], 'num_refinement_blocks': 4,
|
| 178 |
+
'heads': [1, 2, 4, 8], 'ffn_expansion_factor': 2.66,
|
| 179 |
+
'bias': False, 'LayerNorm_type': 'WithBias', 'dual_pixel_task': False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
}
|
| 181 |
|
| 182 |
demoiring_model = FPro(**demoiring_cfg)
|
|
|
|
| 183 |
demoiring_ckpt = torch.load("deblur.pth", map_location='cpu')
|
| 184 |
demoiring_model.load_state_dict(demoiring_ckpt['params'])
|
| 185 |
+
demoiring_model.to(device)
|
| 186 |
demoiring_model.eval()
|
| 187 |
+
|
| 188 |
+
# 模型编译优化
|
| 189 |
+
if PERFORMANCE_CONFIG['enable_torch_compile'] and hasattr(torch, 'compile'):
|
| 190 |
+
try:
|
| 191 |
+
demoiring_model = torch.compile(demoiring_model)
|
| 192 |
+
print("去摩尔纹模型编译优化成功")
|
| 193 |
+
except Exception as e:
|
| 194 |
+
print(f"模型编译失败: {e}")
|
| 195 |
+
|
| 196 |
+
# 预热模型
|
| 197 |
+
with torch.no_grad():
|
| 198 |
+
dummy_input = torch.randn(1, 3, 256, 256).to(device)
|
| 199 |
+
_ = demoiring_model(dummy_input)
|
| 200 |
+
|
| 201 |
print("去摩尔纹模型加载成功!")
|
| 202 |
except Exception as e:
|
| 203 |
print(f"去摩尔纹模型加载失败: {e}")
|
| 204 |
demoiring_model = None
|
| 205 |
|
| 206 |
+
init_time = time.time() - start_time
|
| 207 |
+
print(f"模型初始化完成,耗时: {init_time:.2f}秒")
|
| 208 |
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
+
def fast_inference(body: bytes, task_type: str = "dehaze") -> bytes:
|
| 211 |
+
"""优化的推理函数"""
|
| 212 |
+
start_time = time.time()
|
| 213 |
|
| 214 |
+
# 选择模型
|
|
|
|
|
|
|
|
|
|
| 215 |
if task_type == "dehaze":
|
| 216 |
if dehaze_model is None:
|
| 217 |
raise Exception("去雾模型未加载")
|
| 218 |
model = dehaze_model
|
|
|
|
|
|
|
|
|
|
| 219 |
elif task_type == "demoiring":
|
| 220 |
if demoiring_model is None:
|
| 221 |
raise Exception("去摩尔纹模型未加载")
|
| 222 |
model = demoiring_model
|
|
|
|
|
|
|
|
|
|
| 223 |
else:
|
| 224 |
raise Exception(f"不支持的任务类型: {task_type}")
|
| 225 |
|
| 226 |
+
# 图像加载和预处理
|
| 227 |
img = Image.open(BytesIO(body)).convert("RGB")
|
| 228 |
+
original_size = img.size
|
|
|
|
| 229 |
|
| 230 |
+
# 智能尺寸优化
|
| 231 |
+
if PERFORMANCE_CONFIG['use_fast_mode']:
|
| 232 |
+
img, scale_factor = optimize_image_size(img, PERFORMANCE_CONFIG['max_resolution'])
|
| 233 |
+
print(f"图像缩放比例: {scale_factor:.2f}")
|
| 234 |
+
|
| 235 |
+
# 转换为张量
|
| 236 |
+
arr = np.float32(img) / 255.0
|
| 237 |
+
t = torch.from_numpy(arr).permute(2, 0, 1).unsqueeze(0).to(device)
|
| 238 |
|
| 239 |
+
# Padding
|
| 240 |
factor = 8
|
| 241 |
h, w = t.shape[2], t.shape[3]
|
| 242 |
H = ((h + factor) // factor) * factor
|
|
|
|
| 246 |
t = F.pad(t, (0, padw, 0, padh), 'reflect')
|
| 247 |
|
| 248 |
B, C, H, W = t.shape
|
| 249 |
+
print(f"处理图像尺寸: {H}x{W}")
|
| 250 |
|
| 251 |
+
# 智能切块策略
|
| 252 |
+
crop_size, _, overlap_size = smart_crop_strategy(H, W)
|
| 253 |
+
|
| 254 |
+
if crop_size == H and crop_size == W:
|
| 255 |
+
# 小图像直接处理
|
| 256 |
+
print("直接处理整图")
|
| 257 |
with torch.no_grad():
|
| 258 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 259 |
restored = model(t)
|
| 260 |
else:
|
| 261 |
+
# 大图像切块处理
|
| 262 |
+
print(f"切块处理,切块大小: {crop_size}x{crop_size}, 重叠: {overlap_size}")
|
| 263 |
+
|
| 264 |
+
# 获取切块位置
|
| 265 |
+
_, starts = fast_splitimage(t, crop_size, overlap_size)
|
| 266 |
|
| 267 |
+
results = []
|
| 268 |
with torch.no_grad():
|
| 269 |
+
for i, (hs, ws) in enumerate(starts):
|
| 270 |
+
if torch.cuda.is_available():
|
| 271 |
+
torch.cuda.empty_cache()
|
| 272 |
+
|
| 273 |
+
# 动态切块
|
| 274 |
+
patch = t[:, :, hs:hs + crop_size, ws:ws + crop_size]
|
| 275 |
+
result = model(patch)
|
| 276 |
+
results.append(result.cpu()) # 立即移到CPU释放GPU内存
|
| 277 |
+
|
| 278 |
+
if i % 5 == 0: # 每5个切块打印一次进度
|
| 279 |
+
print(f"处理进度: {i + 1}/{len(starts)}")
|
| 280 |
|
| 281 |
# 合并结果
|
| 282 |
+
print("合并结果...")
|
| 283 |
+
# 将结果移回GPU进行合并
|
| 284 |
+
results = [r.to(device) for r in results]
|
| 285 |
+
restored = fast_mergeimage(results, starts, crop_size, H, W, C, B)
|
| 286 |
+
|
| 287 |
+
# 后处理
|
| 288 |
+
restored = restored[:, :, :h, :w] # 去除padding
|
| 289 |
+
merged = torch.clamp(restored, 0, 1).cpu().squeeze(0).permute(1, 2, 0).numpy()
|
| 290 |
|
| 291 |
+
# 恢复原始尺寸
|
| 292 |
+
if PERFORMANCE_CONFIG['use_fast_mode'] and scale_factor < 1.0:
|
| 293 |
+
merged_img = Image.fromarray((merged * 255).astype(np.uint8))
|
| 294 |
+
merged_img = merged_img.resize(original_size, Image.LANCZOS)
|
| 295 |
+
merged = np.array(merged_img).astype(np.float32) / 255.0
|
| 296 |
|
|
|
|
|
|
|
| 297 |
merged = (merged * 255).astype(np.uint8)
|
| 298 |
|
| 299 |
+
# 输出
|
| 300 |
out_img = Image.fromarray(merged)
|
| 301 |
buf = BytesIO()
|
| 302 |
out_img.save(buf, format="PNG")
|
| 303 |
+
|
| 304 |
+
total_time = time.time() - start_time
|
| 305 |
+
print(f"总���理时间: {total_time:.2f}秒")
|
| 306 |
+
|
| 307 |
return buf.getvalue()
|
| 308 |
|
| 309 |
|
| 310 |
def dehaze_inference(body: bytes) -> bytes:
|
| 311 |
+
"""去雾推理"""
|
| 312 |
+
return fast_inference(body, task_type="dehaze")
|
| 313 |
|
| 314 |
|
| 315 |
def demoiring_inference(body: bytes) -> bytes:
|
| 316 |
+
"""去摩尔纹推理"""
|
| 317 |
+
return fast_inference(body, task_type="demoiring")
|
| 318 |
|
| 319 |
|
| 320 |
def get_model_status():
|
| 321 |
+
"""获取模型状态"""
|
| 322 |
return {
|
| 323 |
"dehaze_model_loaded": dehaze_model is not None,
|
| 324 |
+
"demoiring_model_loaded": demoiring_model is not None,
|
| 325 |
+
"device": str(device),
|
| 326 |
+
"performance_mode": "Fast" if PERFORMANCE_CONFIG['use_fast_mode'] else "Quality"
|
| 327 |
+
}
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
def update_performance_config(max_resolution=1024, fast_mode=True):
|
| 331 |
+
"""更新性能配置"""
|
| 332 |
+
PERFORMANCE_CONFIG['max_resolution'] = max_resolution
|
| 333 |
+
PERFORMANCE_CONFIG['use_fast_mode'] = fast_mode
|
| 334 |
+
print(f"性能配置更新: 最大分辨率={max_resolution}, 快速模式={'开启' if fast_mode else '关闭'}")
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
# 兼容性函数
|
| 338 |
+
inference = fast_inference
|