Spaces:
Running
Running
from ultralytics import YOLO | |
import gradio as gr | |
import cv2 | |
import os | |
import random | |
model = YOLO('best.pt') | |
def show_preds_image(image_path): | |
image = cv2.imread(image_path) | |
outputs = model.predict(source=image_path, conf=0.45, save=True) | |
print("output:", outputs) | |
results = outputs[0] | |
print("results:", results) | |
# for i, det in enumerate(results.boxes.xyxy.cpu().numpy()): | |
# cv2.rectangle( | |
# image, | |
# (int(det[0]), int(det[1])), | |
# (int(det[2]), int(det[3])), | |
# color=(random.randint(0,255), random.randint(0,255), random.randint(0,255)), | |
# thickness=2, | |
# lineType=cv2.LINE_AA | |
# ) | |
return f"runs/detect/predict/{os.path.split(image_path)[-1]}" | |
inputs_image = [ | |
gr.components.Image(type="filepath", label="Input Image"), | |
] | |
outputs_image = [ | |
gr.components.Image(type="filepath", label="Output Image"), | |
] | |
interface_image = gr.Interface( | |
fn=show_preds_image, | |
inputs=inputs_image, | |
outputs=outputs_image, | |
title="Cats and Dogs detector", | |
cache_examples=False, | |
) | |
gr.TabbedInterface( | |
[interface_image], | |
tab_names=['Image inference'] | |
).queue().launch() |